
A
cc

ep
te

d
m

an
us

cr
ip

t.
Pu

bl
is

he
d

in
:

E
ls

ev
ie

r
C

om
pu

te
r

N
et

w
or

ks
,V

ol
.2

28
,J

un
e

20
23

,D
O

I:
10

.1
01

6/
j.c

om
ne

t.2
02

3.
10

97
46

Grace: Low-Cost Time-Synchronized
GPIO Tracing for IoT Testbeds

Laura Harms1,2, Christian Richter1, Olaf Landsiedel1,2

1Kiel University, Germany
2Chalmers University of Technology, Sweden

lah@informatik.uni-kiel.de, christian.richter@stu.uni-kiel.de, ol@informatik.uni-kiel.de

Abstract—Testbeds have become a vital tool for evaluating
and benchmarking applications and algorithms in the Internet
of Things (IoT). IoT testbeds commonly consist of low-power
IoT devices augmented with observer nodes providing control,
debugging, logging, and often also power-profiling capabilities.
Today, the research community operates numerous testbeds,
sometimes with hundreds of IoT nodes, to allow for detailed and
large-scale evaluation. Most testbeds, however, lack opportunities
for tracing distributed program execution with high accuracy
in time, for example, via minimally invasive, distributed GPIO
tracing. And the ones that do, like Flocklab, are built from custom
hardware, which is often too complex, inflexible, or expensive to
use for other research groups.

This paper closes this gap and introduces Grace, a low-cost,
retrofittable, distributed, and time-synchronized GPIO tracing
system built from off-the-shelf components, costing less than C20
per node. Grace extends observer nodes in a testbed with (1)
time-synchronization via wireless sub-GHz transceivers and (2)
logic analyzers for GPIO tracing and logging, enabling time-
synchronized GPIO tracing at a frequency of up to 8 MHz.
We deploy Grace in a testbed and our evaluation shows that it
achieves an average time synchronization error between nodes
of 1.53 µs using a single time source, and 15.3 µs between nodes
using different time sources, sufficient for most IoT applications.

Index Terms—GPIO Logging, GPIO Tracing, Testbed, Internet
of Things, IoT, Time-Synchronization

I. INTRODUCTION

With more than 10 billion connected IoT devices deployed
today, and an estimated 30 billion devices by the beginning
of the next decade [1], the Internet of Things enables new
applications in our connected and data-driven society. Their
connected and often distributed nature makes extensive test-
ing, evaluation, and benchmarking a must to ensure proper
functionality and performance of applications, algorithms, and
protocols before their actual deployment.

Simulation [2], [3] allows for high-level insights into proto-
cols and algorithms. It makes it possible to inspect these in a
controlled environment and evaluate their general correctness.
However, simulation cannot capture all details of a real en-
vironment, nor is it capable of evaluating the performance of
protocols on real hardware. Yet, such evaluation in real-world
environments is necessary to ensure the correct functionality in
nondeterministic environments. Therefore, the research com-
munity commonly uses testbeds: deployments of (low-power)
IoT devices co-located with observer infrastructure, typically

an edge device – like a Raspberry Pi – for instrumentation,
logging, and deployment control.

While testbeds provide real-world insights and are today’s
established tool for evaluating distributed IoT applications,
most lack one essential capability: The capability to non-
intrusively – or with minimal intrusiveness – track the exe-
cution of distributed protocols and algorithms. And the ones
that do offer these capabilities use custom hardware that is
not easily replicable and integrable into existing testbeds. For
example, for debugging and evaluating (real-time) protocols,
we often need insight into the execution and states within
the hardware. Without this insight, we can only treat the
hardware system as a black box. For non-distributed settings
such as traditional software development, one commonly uses
debuggers, with which one can halt program execution and in-
spect the system’s state. In distributed settings, we cannot halt
the operation of nodes as both the environment continues to
change, and all other nodes will also continue their operation.
Another common way is printing messages during operation,
usually through a serial interface. However, printing takes
several hundreds of microseconds, which leads to side effects
on program executions and limits accurate timestamping. It
might even break the timing in timing-critical sections of a
program, leading to missed deadlines. Or the removal of the
print statements after evaluating the system might change the
timing that much that it introduces bugs not previously present.

The third way of gaining insight is through tracing the
General-Purpose Input/Output (GPIO) pins of a processor
or microcontroller. Toggling GPIO pins offers a minimally
intrusive way of communicating timing-correct information
on the operation to the outside world. A logic analyzer
can record the GPIO traces to evaluate these later. While
logic analyzers provide us with a time-accurate trace of the
execution of a program, they commonly only provide insights
into one device due to the physical distance between devices.
However, in a distributed communication system, it is essential
to know how multiple devices interact with each other and at
what exact point in time, or how much time passes between
the same operation on multiple devices. For example, Time-
Division Multiple Access (TDMA) protocols like Glossy [4]
or Time-Slotted Channel Hopping (TSCH) [5] are time-critical
protocols that synchronize their communication; and, among
others, LWB [6] and Chaos [7] enable multiple devices to send
data concurrently in a time-synchronized fashion. To evaluate

A
cc

ep
te

d
m

an
us

cr
ip

t.
Pu

bl
is

he
d

in
:

E
ls

ev
ie

r
C

om
pu

te
r

N
et

w
or

ks
,V

ol
.2

28
,J

un
e

20
23

,D
O

I:
10

.1
01

6/
j.c

om
ne

t.2
02

3.
10

97
46

the synchronization of protocols like these and the interaction
between multiple devices, we need an external system that
itself is time-synchronized. To achieve this, we require a GPIO
tracing system, which performs a time-synchronized tracing on
all devices.

Many means of time-synchronization exist, including the
Network Time Protocol (NTP) and the Global Positioning
System (GPS). However, none of them offers a low-cost, low
complexity solution that is both available at indoor testbed
locations and offers the required accuracy. For example, the
accuracy of GPS would be favorable, however, GPS requires
direct line of sight to several satellites, making it only usable
outside or close to a window. NTP on the other hand is
available anywhere where a device has internet access, includ-
ing on observer devices in testbeds. However, it only offers
accuracy in the order of milliseconds, which is not sufficient
for precisely timestamping events in IoT protocols.

There are distributed, time-synchronized GPIO logging sys-
tems implemented in existing testbeds [8], [9], [10]. However,
they use custom hardware with FPGAs and require a specific
testbed observer platform throughout the testbed. This limits
their adoption into other testbeds, especially those that already
exist and use different hardware and observer platforms.

In this paper, we present Grace, a low-cost, retrofittable,
distributed, and time-synchronized GPIO tracing system using
off-the-shelf components. Grace extends observer nodes with
(1) time-synchronization via wireless sub-GHz (433 MHz)
transceivers and (2) logic analyzers for GPIO tracing and
logging. Using sub-GHz wireless, Grace enables building-
wide time-synchronization from a single central node perform-
ing unidirectional single-hop RBS-like time-synchronization.
Extending Grace and using multiple synchronization nodes
even extends the covered area to larger buildings or offers
even campus-wide time-synchronization while keeping the
single-hop nature of our synchronization system. Further,
we devise a software framework to enable extensive tracing
capabilities using this hardware. In our evaluation, we show
that Grace is capable of continuously logging sparse data
as commonly produced when debugging IoT systems, such
as wireless protocols, at a rate of 8 MHz. Moreover, we
show that we achieve a time-synchronization of on average
1.53 µs between nodes using the same time source, which,
as we argue, is sufficient for most applications. Moreover, we
extend our initial work on Grace [11] to function in larger
networks by introducing multiple timesources which provide
an average time-synchronization of 15.3 µs between nodes and
sub-deployments using different time sources.

This paper is an extension of [11], which made the following
contributions:

� We present Grace, a low-cost time-synchronized GPIO
tracing system for IoT testbeds.

� We implement Grace using off-the-shelf hardware to
enable easy adoption in other building-wide testbeds and
make both the software and the hardware setup openly1

1Available as open-source at: https://github.com/ds-kiel/grace

available.
� We show Grace’s low cost of less than C20 per node.
� We evaluate Grace, showing its degree of time-

synchronization between nodes of on average 1.53 µs,
while not exceeding a worst-case synchronization of
3.75 µs.

Now, this paper adds the following new contributions:
� We significantly extend the discussion of our design, its

algorithms, and deepen the discussion of Grace through-
out the paper. We add a discussion of the necessity of a
system like Grace, a more comprehensive explanation of
the design, including additional algorithms, as well as a
discussion of the scalability of Grace.

� We introduce multiple types of synchronization nodes,
enabling time-synchronization for both building-wide and
campus-wide testbeds.

� We discuss and evaluate the intrusiveness of GPIO tracing
on IoT platforms.

� We evaluate the time synchronization performance of
Grace when using multiple time sources and show that
its degree of time-synchronization is on average around
15.3 µs between nodes using different time sources.

The remainder of this paper is organized as follows. Sec-
tion II gives necessary background information, followed by
a discussion of related testbeds and GPIO tracing testbed sys-
tems in Section III. Section IV introduces Grace’s design, and
Section V presents our experimental evaluation. We conclude
our paper in Section VI.

II. BACKGROUND

This section provides the necessary background for the
remainder of this paper. We introduce (1) the concept of
time synchronization with a focus on (2) the Network Time
Protocol (NTP) and (3) the Reference Broadcasting System
(RBS). Afterward, we provide general background on (4)
Logic Analyzers.

A. Time Synchronization
Most electronic computing devices use a crystal oscillator

as a basis for their clock. These oscillators operate at a certain
frequency, but usually do not perfectly hold their nominal
frequency. No oscillator is perfect, and physical variations like
temperature or air pressure add to the oscillators’ frequency
variation. While these drifts are commonly negligible in stand-
alone single computer setups, they impose a challenge on
distributed computing and communication systems. These sys-
tems require a tight synchronization of the individual clocks.
For time-sensitive applications, these clocks have to fulfil one
or both of these metrics: precision and accuracy. The notion
of precision (�) defines the maximum time error between two
clocks (p, q) of a system:

8t; 8p; q : jCp(t)� Cq(t)j � � (1)

The notion of accuracy (�) describes a clock’s difference
towards a reference timescale [12]:

8t;8p : jCp(t)� tj � � (2)

https://github.com/ds-kiel/grace

A
cc

ep
te

d
m

an
us

cr
ip

t.
Pu

bl
is

he
d

in
:

E
ls

ev
ie

r
C

om
pu

te
r

N
et

w
or

ks
,V

ol
.2

28
,J

un
e

20
23

,D
O

I:
10

.1
01

6/
j.c

om
ne

t.2
02

3.
10

97
46

A common reference timescale is UTC, which the Network
Time Protocol (NTP) (see Section II-C) uses.

Depending on the importance of accuracy or precision,
different synchronization approaches like NTP (see Sec-
tion II-C) or the Reference Broadcasting System (RBS) (see
Section II-D) are suitable. Within the next sections, we de-
scribe these two in more detail.

B. Global Positioning System (GPS)

The Global Positioning System (GPS) is a global navigation
satellite system (GNSS) that provides positional information
on earth. Moreover, it contains atomic clocks and is thus ca-
pable of providing accurate timekeeping functionalities. Com-
mon GPS receiver modules are capable of generating a precise
1 pulse per second (1-PPS) signal from the received data.
Moreover, they output NMEA 0183 [13] sentences containing
additional information. NMEA 0183 is a standard for commu-
nication between marine electronics including GPS controlled
by the National Marine Electronics Association (NMEA). For
example, the RMC sentence [14] (Recommended minimum
specific GPS/Transit data) includes, i.a., time, location, and
date.

C. Network Time Protocol (NTP)

The most widely used time synchronization protocol for
distributed systems is the Network Time Protocol (NTP) [12].
It is the default protocol used by computers and most devices
directly connected to the Internet, and builds the baseline for
other protocols. For time synchronization, a device contacts
an NTP server to receive the server’s local time. From the
received timestamps and the device’s local timestamps of
sending the request and receiving the response, the device can
compute the round trip latency and thus determine its offset
from the reference clock of the server.

In NTP, clocks are synchronized to UTC. As not each NTP
server can be equipped with a reference clock, e.g., a GPS
receiver, NTP builds a hierarchical structure of servers. This
structure uses so-called stratum levels. A stratum-1 server is
equipped with a reference clock. Each server is a stratum-
(k + 1) server if the server it contacts to synchronize to is a
stratum-k server. NTP is known to achieve accuracy between
1 and 50 ms.

D. Reference Broadcasting System (RBS)

The reference broadcasting system (RBS) [12] differs sig-
nificantly from methods like NTP. It does not assume the
existence of an accurate clock (e.g., a UTC clock) within
the network. Instead, it merely has the goal of network-
internal clock synchronization. RBS is a wireless, physical
layer time synchronization method. Moreover, contrary to
other methods, where a node contacts a timeserver, in RBS, a
time source broadcasts a reference signal to all nodes within
the network. Every node generates a timestamp with its local
clock on reception of the synchronization signal. As RBS only
has a single sender that reaches all receivers, most parts of
the critical path are eliminated. In a wireless network, the

transmission time to all receivers is roughly the same, with a
negligible offset. Thus, the critical part is only the reception
(and timestamping) of the broadcast packet at the receivers.
To reduce jitter introduced upon reception, RBS performs
multiple broadcast rounds, and nodes exchange each other’s
delivery times to estimate their mutual, relative offset.

E. Logic Analyzer

A logic analyzer records the physical state of one or more
signals over time. Logic analyzers commonly trace digital sig-
nals. Some logic analyzers can even record analog waveforms
(tracing signals voltage level), like oscilloscopes. Thus, logic
analyzers commonly replace an oscilloscope, especially when
working with digital electronic components. To process the
trace of a logic analyzer, several software solutions working
with logic analyzers have built-in features to not only display
the recorded traces, but even decode protocols like the Serial
Peripheral Interface (SPI) communication protocol to use a
logic analyzer to debug communication between electronic
components [15].

III. RELATED WORK

In the past 18 years, starting with MoteLab [16], the
research community proposed several testbed architectures
and currently operates several testbeds for testing, debug-
ging, evaluating, and benchmarking low-power IoT proto-
cols, with tens to thousands of nodes. A selection of these
are Flocklab [8], Flocklab 2 [10], [17], D-Cube [18], FIT
IoTLab [19], Indriya [20], Indriya2 [21], OpenTestBed [22],
WUSTL testbed [23], TWIST [24], Kansei [25], SmartSan-
tander [26], VIADUCT [27], Tracelab [9], Aveksha [28],
Minerva [29], HATBED [30], as well as the previous version
of our own IoT testbed [31]. While these testbeds and testbed
architectures have different goals, they all are usable for testing
and evaluating IoT protocols. For example, OpenTestBed [22]
is a movable testbed which can easily be placed wherever
needed by using a node design that doesn’t require any
fixed infrastructure. SmartSantander [26] proposes a city-
scale testbed with up to 20000 devices. VIADUCT [27]
bridges the gap between testing infrastructure and real-world
IoT deployments. FIT IoTLab [19] offers a wide range of
different IoT platforms and in addition to nodes with a fixed
location they also offer moving testbed nodes mounted on
robots. D-Cube [18] takes a different approach by building a
testbed intended for benchmarking IoT protocols in a wireless
environment with a controllable amount of interference.

While all of these testbeds offer the logging of serial output,
only a subset has GPIO interfacing capabilities. To our knowl-
edge, the first IoT testbed offering GPIO tracing capabilities
is Flocklab [8]. Flocklab’s GPIO tracing system directly uses
the observer for GPIO tracing and can trace up to 5 GPIO pins
at a sampling rate of up to 10 kHz. For time-synchronization,
the system uses NTP, reaching a precision of 40 µs. Next
to GPIO tracing, Flocklab also allows GPIO actuation as
well as power profiling. With Tracelab [9], Lim et al. extend
Flocklab by a more capable GPIO acquisition system based

A
cc

ep
te

d
m

an
us

cr
ip

t.
Pu

bl
is

he
d

in
:

E
ls

ev
ie

r
C

om
pu

te
r

N
et

w
or

ks
,V

ol
.2

28
,J

un
e

20
23

,D
O

I:
10

.1
01

6/
j.c

om
ne

t.2
02

3.
10

97
46

on an FPGA. They achieve a short-term sampling frequency
of up to 100 MHz, and a continuous sampling frequency of
around 285 kHz. For time synchronization, they use Glossy on
868 MHz with an FPGA-based clock correction control loop,
achieving a maximum time-synchronization error of 1.5 µs.

Other testbed architectures like Aveksha [28], Minerva [29],
and HATBED [30] use different J-Link tracing methods,
including tracing the program counter, or watchpoint tracing
in a non-intrusive way. Aveksha [28] uses an On-Chip Debug
Module (OCDM) to non-intrusively observe the inner work-
ings of embedded processors. It can trace specific program
counter addresses, the entry, and exit of tasks and interrupt
service routines as well as user-defined events. It uses a
method of polling the JTAG interface, allowing a polling
period of 30 µs. While Aveksha can trace internal events
of embedded processors, it is not suitable for distributed
debugging, as it does not perform synchronized timestamping.
Minerva [29] is closely related to Aveksha, as it also offers
non-intrusive tracing in testbeds using a JTAG interface. How-
ever, Minerva additionally offers time-synchronized tracing,
synchronous stopping of the execution to collect memory snap-
shots and network-wide assertions based on the traced data.
Minerva uses NTP for time synchronization and timestamping
reaching a millisecond precision. Thus, it is not suitable for
tracing time-critical applications. HATBED [30] uses the on-
chip debugging capabilities of ARM Cortex-M3/M4 proces-
sors. It supports printf logging using the Instrumentation
Trace Macrocell (ITM) and watchpoint-logging using the Data
Watchpoint and Trace Unit–(DWT). HATBED uses a logic
analyzer (the same chipset we use for our work) for tracing
the ITM and DWT output.

A more recent work is Flocklab 2 [10], [17], which uses the
programmable real-time unit (PRU) of a Beaglebone Green
for GPIO tracing. For time synchronization, the system uses
GNSS with an accuracy of approx. 50 ns where available,
and the Precision Time Protocol (PTP) with an accuracy of
approx. 1 µs at all other locations. Next to GPIO tracing, it
also supports Serial Wire Debug (SWD) tracing through a J-
Link debug probe.

Regarding time synchronization, Grace has the highest
similarity with Tracelab. However, instead of performing the
time synchronization in hardware on an FPGA, we enable it
at a higher precision in software on off-the-shelf hardware,
a Raspberry Pi, when processing the logic analyzer’s traces.
Regarding GPIO tracing, we differ from all these solutions in
that we use low-cost logic analyzers and do not depend on a
specific observer platform.

IV. DESIGN

Our design of Grace enables a time-synchronized use of
GPIO tracing in building-wide or campus-wide testbeds while
only using off-the-shelf components. Actuating GPIO pins
is minimally intrusive and thus has commonly negligible
influence on a system’s timing.

A. Design Overview

The diagram in Fig. 1a illustrates the general idea of
Grace. For building-wide testbeds, a single synchronization
node repeatedly sends out a time signal. Each testbed node,
equipped with a receiver, receives this time signal. Using the
signal, each observer synchronizes its GPIO tracing clock.
This synchronization of the tracing clocks enables the post-
processing to match the GPIO traces of the different devices
and build a common trace over all distributed devices. Once
a testbed spans a wider area, such as like multiple buildings
or a campus, a single synchronization node, will not be able
to reach all nodes. For such large testbeds, Grace relies on
multiple synchronization nodes, that synchronously send out
the same timestamp.

Grace’s design concerns and extends solely the testbed’s
observer infrastructure, and it does not impact the program
execution on our target platforms (see IoT nodes in Fig. 1a).
All we need on the IoT nodes are available GPIO pins, which
almost every hardware has. Through our design, the IoT nodes
gain the option to output information through state changes of
their GPIO pins in addition to their serial logging capabilities
over USB.

Within the following sections, we motivate the need of
GPIO tracing for low-intrusive time stamping, and describe
the design of the individual components of Grace in detail.
For the synchronization node, we split our design into two
distinct parts; one using a single synchronization node and
one using multiple synchronization nodes following Grace’s
extended design. Next, we discuss our time-error correction
algorithm and discuss the system’s integration into an existing
testbed.

B. Low-intrusive time stamping

Before discussing our design in detail, we motivate the
necessity of GPIO tracing to achieve low-intrusive time stamp-
ing. For example, if we are developing a protocol for wireless
communication of IoT nodes, we might come to the point
that we want to identify which nodes turn on their radio at
what time, e.g., to evaluate the accuracy of the protocol’s
time synchronization algorithm. For this, we require a sys-
tem that precisely timestamps the event and does not delay
the processing of received data. A time-synchronized serial
logging system using print-statements could enable us to
timestamp such an event. However, the duration it takes to
output anything, even a single byte over a serial interface, has
a significant influence on the program’s timing and on the
accuracy of the timestamp. For example, transmitting a single
byte takes 86.8 �s at a baud rate of 115200 baud/s (8 data
bits, 1 start bit, 1 stop bit). Changing a state on a GPIO pin is
much faster and takes only a few clock cycles, resulting in an
overhead of no more than tens or hundreds of nanoseconds.
For example, the nRF52840 [32] takes 140:5 ns for switching
the state of a GPIO pin (cf. Section V-B).

In Section V-B, we evaluate the exact timing differences
for one of our target platforms. Moreover, precisely time
synchronizing logic analyzers that are fully under our control,

A
cc

ep
te

d
m

an
us

cr
ip

t.
P

ub
lis

he
d

in
:

E
ls

ev
ie

r
C

om
pu

te
r

N
et

w
or

ks
,

Vo
l.

22
8,

Ju
ne

20
23

,
D

O
I:

10
.1

01
6/

j.c
om

ne
t.2

02
3.

10
97

46

(a) Grace's node types. The testbed node consists of an observer platform and one
or more IoT nodes. We add a logic analyzer and a radio for time-synchronized GPIO
tracing. The synchronization node consists of a microcontroller and a radio generating
the time signal. In case of larger deployments, we can use multiple synchronization
nodes and add an otherwise optional GPS receiver. The GPS receivers on each
synchronization node synchronously generate a signal once a second (1-PPS) that
we use for time-synchronizing the synchronization nodes.

(b) A testbed node. We see from left to right
a Zolertia Fire�y, a Raspberry Pi with our
custom HAT connecting the CC1101 radio on
top and the logic analyzer (top of the box) to
the Pi, a Telosb mote, and a Nordic nRF52840-
DK.

Fig. 1: Design Overview ofGrace.

is simpler than precisely time synchronizing general pur-
pose Linux operating systems. Therefore, a time-synchronized
GPIO tracing system, like the one we present in this paper, can
offer precisely time-synchronized, low-intrusive time stamping
for evaluation purposes of IoT systems and protocols.

C. Synchronization Node

A synchronization node inGrace is a node (physically)
independent of the testbed and its observers and IoT nodes.
It consists of a microcontroller and a 433 MHz radio (see
Fig. 1a). In case of multiple synchronization nodes, or in need
of an accurate time source, it also contains a GPS receiver.
We use the 433 MHz band, which is an ISM band available
in the International Telecommunication Union's (ITU) region
1 (i.a., Europa and Africa) [33]. Creating a design with
433 MHz radios allows the use of only one synchronization
node for a typical building-scale testbed, due to the extended
range of 433 MHz radios compared to the range of radios
using higher frequencies. Moreover, the 433 MHz band is
well outside the bands usually used for IoT research: the
2.4 GHz and 868/915 MHz bands. Nonetheless, please note
that the design ofGrace is generic and independent of the
433 MHz band. In countries where it is not available as open
ISM band, one can use other frequency ranges. For larger
testbeds beyond building scale, we extend our initial design
and use multiple of our synchronization nodes communicating
on different channels. As the testbed nodes all have to receive a
timestamp at the same time, the synchronization nodes have to
send the same synchronization timestamp at the same time. To
synchronize the synchronization nodes, we have to discipline
them with an external clock. We choose to use GPS receivers
and their 1-PPS (1 pulse per second) signal for this purpose.

a) Single Synchronization Node:In case of a single
synchronization node, the node generates and transmits a
timestamp at a con�gurable time interval. In our case, we
use an interval of one second, inspired by the one pulse per
second signal generated by GPS receivers. The timestamp we
send contains a counter value that represents the time that
has passed since turning on the synchronization node. With
only one synchronization node, we do not require a globally
accurate clock, but rather a single time source within the
vicinity of the network. Thus, the synchronization node can
use its microcontroller's clock to generate the timestamps.
Even variations in the time between two generated timestamps
are not a problem as we merely need a common time reference
and not a globally accurate clock.

b) GPS-disciplined Synchronization Node:If we
nonetheless require a globally accurate clock, or in case of
multiple synchronization nodes, we require a different design,
extendingGrace's initial design. This node type also transmits
a time signal once a second. However, instead of generating
a timestamp locally, we send the Unix timestamp [34] and
each of the synchronization nodes transmits the timestamp
at the same time. We compute this timestamp from the GPS
data we receive and use the one pulse per second signal
(1-PPS) as a trigger to send the timestamp. Algorithm 1
shows the procedure of timestamping and transmitting the
timestamp. On the �rst PPS signal, when the timestamp is 0,
we initialize our Unix timestamp. We use the GPS NMEA
RMC string [14], containing both the current date and UTC
time, as a basis for calculating the initial timestamp. We
compute the timestamp according to Algorithm 2. In case
the synchronization nodes misses or skips a 1-PPS signal
due to, e.g., the lack of a GPS �x, we reinitialize the Unix

A
cc

ep
te

d
m

an
us

cr
ip

t.
P

ub
lis

he
d

in
:

E
ls

ev
ie

r
C

om
pu

te
r

N
et

w
or

ks
,

Vo
l.

22
8,

Ju
ne

20
23

,
D

O
I:

10
.1

01
6/

j.c
om

ne
t.2

02
3.

10
97

46

Algorithm 1 Timestamping and transmission on PPS interrupt

Input: timestamp , skippedpps , stateradio , timer ,
counttimer

Ensure: timestamp , timer
1: if timestamp = 0 then
2: initialize time signal
3: else
4: stop timer
5: counttimer 0
6: if skippedpps = 1 then
7: executeinitialize time signalalgorithm
8: skippedpps 0
9: else

10: timestamp timestamp + 1
11: if stateradio = TX MODE then
12: transmittimestamp
13: busy wait for transmission to �nish
14: end if
15: start timer //1 second timer
16: end if
17: end if

timestamp according to the same procedure. We detect this
skipping of a signal, using a local 1-second timer. If we
did not skip a signal, we increment the timestamp by 1 and
transmit the time signal. Using the GPS time and the 1-PPS
signal, we can ensure that all synchronization nodes generate
the same timestamp at the same time. By only sending the
timestamp if we received at least two consecutive 1-PPS
signals, we do not need to read the timestamp from the
GPS module, but can instead increase the timestamp locally
and can transmit this, ensuring a minimal compute time
before transmitting the timestamp. Moreover, performing the
same instructions on each synchronization nodes and not
�rstly communicating with the GPS module, ensures that the
actual time we transmit the signal does not vary signi�cantly
between the synchronization nodes.

Regardless of the type of synchronization node, the node's
radio broadcasts the timestamp to all testbed nodes in range.
As – in the case of multiple synchronization nodes – all
send out the timestamp at the same time, we can expect
wireless interference at testbed nodes close to more than one
synchronization node. We avoid this interference by using dif-
ferent frequency channels for different synchronization nodes.
Each testbed node is precon�gured to listen on one of these
channels.

The approach of sending a timestamp at a regular interval
(e.g., once a second) to all testbed nodes in a single(-hop)
wireless broadcast follows the approach of the reference
broadcasting system (RBS) (see Section II-D). Through the
single broadcast and the close distance of all nodes to its
synchronization node, we have a low signal propagation delay
to all testbed nodes. It is low enough that all nodes will
receive the time signal with a negligible time offset during
the same logic analyzer sampling period or latest with an

Algorithm 2 UTC to Unix timestamp conversion

Input: year, month , day, hour , minute , second
Ensure: timestamp

1: timestamp reference 1640995200 f 2022-01-
01T00:00:00+00:00g

2: daysprevious months
[0; 31; 59; 90; 120; 151; 181; 212; 243; 273; 304; 334]

3: leap years 0
4: y 2022
5: while y < year do
6: if y mod4 = 0 then
7: leap years leap years + 1
8: end if
9: y y + 1

10: end while
11: days (year � 2022)� 365 + leap years

+ daysprevious months [month � 1] + day � 1
12: if (month > 2) ^ (year mod4 = 0) then
13: days days+ 1 f current year is a leap yearg
14: end if
15: timestamp timestamp reference + (days � 86400) +

(hour � 3600) + (minute � 60) + second
16: return timestamp

offset of a few sampling periods for physically large testbeds.
For example, when using a logic analyzer with a sampling
frequency of 8 MHz, and a sampling period of125 ns, the
possible distance between two nodes to receive the timestamp
on the same sample is about37:5 meters. Any two nodes
which have a distance offset from the time source of less than
half that distance (18:7 meters) will receive the timestamp in
the same logic analyzer sample. Note that we do not intend
to synchronize the clocks of testbed observers, but rather
synchronize the timestamps of the logic analyzers.

D. Testbed node

A testbed node consists of a controller (e.g., a Raspberry
Pi), often also denoted as observer, and one or more low-
power IoT devices as target platforms (see Fig. 1a). The target
platforms expose GPIO pins that are to be traced. The system
we describe here concerns solely the controller and does not
pose any overhead on the IoT platforms. To enable this tracing,
we devise a system consisting of a USB logic analyzer, and
a radio that together can be retro�tted to any testbed by
connecting them directly to the controller node. In addition,
we devise a small software library for data acquisition and
control of these devices for deployment on the controller
node. We use the logic analyzer for the GPIO tracing and
the radio for receiving the timestamp from a synchronization
node. We reserve one of the logic analyzer's pins for the
radio. All other GPIO pins are available for tracing the target
platforms' GPIO pins. Once the radio receives a signal from
the synchronization node, it turns on its GPIO pin connected
to the logic analyzer. This noti�es the process, running on

A
cc

ep
te

d
m

an
us

cr
ip

t.
P

ub
lis

he
d

in
:

E
ls

ev
ie

r
C

om
pu

te
r

N
et

w
or

ks
,

Vo
l.

22
8,

Ju
ne

20
23

,
D

O
I:

10
.1

01
6/

j.c
om

ne
t.2

02
3.

10
97

46

Algorithm 3 Process Bulk Data

Input: data, stateprev (previous GPIO state),maskactive

(active channels),channeltime (time signal channel)
1: for each sample 2 data do
2: if sample 6= stateprev then
3: changed (sample � stateprev) ^ maskactive

f bitwiseg
4: if changedthen
5: for each channel do
6: if changed^ (1 << channel) then
7: if channel = channeltime ^

sample[channel] = 1 then
8: execute reference time signalalgorithm

(Algorithm 5)
9: else

10: execute GPIO signal algorithm (Algo-
rithm 4)

11: end if
12: end if
13: end for
14: end if
15: end if
16: stateprev sample
17: executetick algorithm (Algorithm 6)
18: end for

Algorithm 4 Handle GPIO signal

Input: TICKS PER NANOSECOND, stateclock , seconds,
accumulator , stategpio � pin , channelevent

Output: trace object (to be written to �le)
1: if stateclock = FREQthen
2: timestamp 109 � seconds+ accumulator

TICKS PER NANOSECOND
3: create trace object containing timestamp ,

stategpio � pin , andchannelevent

4: return trace object
5: end if

the controller node and handling the logic analyzer's input
of a new timestamp. Moreover, it pinpoints the reception of
the time signal to an exact tick of the logic analyzer. In other
words, we can match the reception time of the synchronization
signal to a local timestamp of the GPIO tracing system. This
allows us to perform error correction on the local time and thus
have a notion of synchronization for combining the recorded
traces of different devices in post-processing.

Within the following sections, we describe the different
components of the GPIO tracing and the time synchronization.

E. GPIO Tracing

For GPIO tracing,Grace employs a USB-driven logic
analyzer. This logic analyzer has to be able to trace sparse
amounts of data on multiple GPIO pins and write the traces
without prior processing to the USB buffer.

Algorithm 5 Handle reference time signal

Input: WEIGHT, TICKS PER SECOND, stateclock ,
ticks nominal , ticks actual , seconds, f req nominal ,
accumulator

Output: stateclock , f req adj , of fset , of fset adj ,
error remaining , seconds, secondsprevious , ticks actual

1: secondsref read timestamp from radio
2: if stateclock = WAIT then
3: seconds secondsref

4: stateclock OFFSET
5: else
6: factor (seconds ref � seconds previous) � ticks nominal

ticks actual

7: f req adj f req nominal � factor
8: if secondsref = seconds+ 1 then
9: error remaining TICKS PER SECOND �

accumulator
10: of fset accumulator � TICKS PER SECOND
11: else if secondsref = secondsthen
12: error remaining accumulator
13: of fset accumulator
14: end if
15: of fset adj of fset=ticks nominal

16: ticks actual 0
17: end if
18: secondsprevious secondsref

19: return

F. Trace Data Processing

The algorithms at the observer processes the incoming data
in bulks. The starting point for the bulk data processing
is Algorithm 3. We perform different actions based on the
changes present in each data sample. Each data sample is one
recording of the logic analyzer. We compare each sample to
its previous one. If there are changes present, we identify the
corresponding channels of the logic analyzer. Depending on
the channel's role, we perform further actions. If the state
of the channel corresponding to the radio changed and that
pin turned on, we know that we received a new time signal.
We describe the algorithm for processing this time data in
the following section (Section IV-F1). If we detect a change
on one of the traced GPIO pins, we timestamp the event
(if we previously received at least two global timestamps)
according to Equation 3 and Algorithm 4 and hand it over
for further processing. Lastly, we perform one clock tick of
the logic analyzer updating its timestamp for the next sample
(see Section IV-F2).

timestamp 109 � seconds+
accumulator
ticks per ns

(3)

For simplicity and without losing generality, we assume
a timestamp interval of one second for the algorithms. The
timestamp interval is easily adjustable to a different timescale.

1) Time Error Correction: Once the observer's bulk data
processing algorithm (Algorithm 3) detects the reception of

A
cc

ep
te

d
m

an
us

cr
ip

t.
P

ub
lis

he
d

in
:

E
ls

ev
ie

r
C

om
pu

te
r

N
et

w
or

ks
,

Vo
l.

22
8,

Ju
ne

20
23

,
D

O
I:

10
.1

01
6/

j.c
om

ne
t.2

02
3.

10
97

46

a new time signal, we execute Algorithm 5. This algorithm
essentially determines the time increment added for each
sample recorded by the logic analyzer. At �rst, it reads the
received data (timestamp) from the radio and sets the radio
back into receive mode, which prepares the radio for receiving
the next timestamp and turns off the radio's GPIO pin. Now
we have the global timestamp and the exact tick it was
received on. The processing of it differs depending on the
state the GPIO tracing clock-correction system is in. The
clock correction has two different states,WAIT, andOFFSET.
Initially, we start in stateWAIT until we process our �rst time
signal.

When receiving the �rst time signal, the algorithm saves
the received timestamp as the current time with respect to
the current sample, and as the previous timestamp for the
algorithm's next iteration. Moreover, it changes the clock's
state toOFFSET.

When the system is in stateOFFSET, we start by calcu-
lating a factor after receiving and reading the reference time
(secondsref):

factor
(secondsref � secondsprevious) � ticks nominal

ticks actual
(4)

This factor determines how much faster or slower the logic
analyzer clock ran since receiving the previous timestamp.
Please note, that it is not necessary that we receive every
timestamp. We just need any timestamp after the previous one.
The factor uses both the current timestamp (secondsref) and
the previously received timestamp (secondsprevious), as well
as the nominal number of ticks (ticks nominal) that should
pass within a second (e.g.,8 000 000 at 8 MHz) and the
actual number of ticks passed since the previous reception
of a timestamp (ticks actual). If this factor is 1, the clock of
the logic analyzer is running at its nominal frequency. If the
factor is < 1, the logic analyzer's sampling frequency is too
high and if the factor is> 1, its frequency is too low. Using
this factor, we can adjust the frequency value:

f req adj f req nominal � factor (5)

Phase offset:Moreover, the algorithm performs an addi-
tional phase offset adjustment. If the logic analyzer's fre-
quency is not exactly the nominal frequency and neither a
multiple of it, there will remain an offset of ticks the logic
analyzer's clock is ahead or behind the reference clock. This
offset is a phase offset, which we also need to handle when
increasing our clock. To be able to correct this phase offset,
we calculate the error to the closest second and an adjusted
offset to adjust the phase when increasing the tick counter for
each logic analyzer sample. Lastly, we reset the tick counter
(ticks actual) to zero.

Independent of the clock's state, we save the previous
timestamp for the algorithm's next iteration.

2) Clock Tick: Algorithm 6 performs the frequency and
phase adjustments computed in Algorithm 5 and discussed

Algorithm 6 Tick

Input: TICKS PER SECOND, stateclock , f req adj ,
of fset adj , error remaining , seconds, ticks actual ,
accumulator

Output: of fset adj , error remaining , seconds, ticks actual ,
accumulator

1: if stateclock = OFFSETthen
2: accumulator accumulator + f req adj � of fset adj

3: if of fset adj < 0 then
4: error remaining error remaining + of fset adj

5: else
6: error remaining error remaining � of fset adj

7: end if
8: if error remaining � 0 then
9: of fset adj = 0

10: end if
11: if accumulator > TICKS PER SECONDthen
12: seconds seconds+ 1
13: accumulator accumulator �

TICKS PER SECOND
14: end if
15: ticks actual ticks actual + 1
16: return
17: end if

above. This algorithm only executes once the system has
received an initial time value and thus is either in state
OFFSET. The algorithm design follows closely the precision
system clock design of NTP [35]. On each tick, we increase an
accumulator value by a frequency value deduced by a phase
offset value. With this, we increase the logic analyzer times-
tamp (cf. Equation 3) by a value close to its actual frequency
while removing the phase error over time. This method of error
correction corrects the error evenly spread over the course of
one second. If we do not have a (remaining) phase error, the
timestamp increases with the logic analyzer's frequency. Once
the accumulator reaches the value corresponding to a second,
we increase the second counter and reduce the accumulator
by the respective value corresponding to one second. Lastly,
we increase the tick counter.

This method of performing a tick at each sample has the
advantage that it allows us to precisely adjust the clock of
the logic analyzer. Moreover, the advantage of doing these
adjustments in software is the granularity with which we can
adjust phase and frequency. Instead of performing a correction
every 10 ms (cf. NTP [12]) and having to do a rather large
adjustment, adding 9 or 11 ms, we can have much smaller
changes by adjusting the clock slightly for every data sample
and thus approximately8 � 106 times a second (if the logic
analyzer runs at 8 MHz).

G. Post-processing

Each of the testbed's nodes independently collects traces
and timestamps these. Yet, as the system is intended to run dis-

A
cc

ep
te

d
m

an
us

cr
ip

t.
P

ub
lis

he
d

in
:

E
ls

ev
ie

r
C

om
pu

te
r

N
et

w
or

ks
,

Vo
l.

22
8,

Ju
ne

20
23

,
D

O
I:

10
.1

01
6/

j.c
om

ne
t.2

02
3.

10
97

46

tributed on several devices, we need to aggregate and process
the traces, eventually. We perform this aggregation centrally on
the testbeds central server. Therefore, the observers transmit
their traces and serial logs to the central server using their
network connections. As all timestamps are based on the same
global clock, we can just merge all timestamped traces into a
common trace. When using one or multiple GPS-disciplined
synchronization nodes, the timestamps in this common trace
follow a global reference time (UTC). If we want to have
the same global duration of a second, when using the single,
non-GPS synchronization node, we can trace a GPS 1-PPS (1
pulse per second) signal at one of the testbed nodes. With this
signal, we can stretch or unstretch the recorded time between
two GPS time signals for all traces, matching our traces to a
more accurate timescale (UTC). As long as testbed server has
enough storage, we can scale this post-processing and thus
our system to in�nitely many testbed nodes while linearly
increaing the post-processing time.

H. Implementation

After presenting the design ofGrace, we discuss its im-
plementation. We also discuss its integration into our existing
testbed [31], to illustrate howGrace can be retro�tted and
integrated into existing testbeds.

Synchronization node: For implementing the synchroniza-
tion node, we use an STM32F401 microcontroller with
86 MHz clock speed and a CC1101 433 MHz radio [36].
In case of the GPS-disciplined synchronization node, we ad-
ditionally use the MTK3339 GPS chipset [37] and an external
GPS antenna with a gain of30� 3 dBi. We send a timestamp
once a second. Either triggered by the GPS 1-PPS signal, or
by a local timer. The timestamp we send once a second is a
4 byte value and the sole payload of the packet. This payload
size is suf�cient to send Unix timestamps until the beginning
of the next century.

CC1101 Packet Format: The total structure of the packet
we send after the preamble consists of 2 bytes sync word,
one byte each for packet length and address, 4 bytes payload
(timestamp) and a 2-byte checksum [36]. As we use an
unsigned integer as our payload, it is large enough for any
Unix timestamp in this century.

Testbed node: As an observer, we use a Raspberry Pi 3B+
in our testbed due to its low price and wide availability at
the time of building the testbed. For the GPIO tracing, we
use an eight-channel logic analyzer featuring a Cypress EZ-
USB FX2LP microcontroller [38]. The FX2 consists of an
8051 microcontroller, a USB interface, and i.a. the General
Programmable Interface (GPIF). The GPIF allows specifying
custom communication protocols via a �nite state-machine. It
is used to constantly sample data from the Logic Analyzer's
input pins into the USB buffer. All of these components work
independently of each other, allowing a deterministic tracing
operation without being interrupted by the microcontroller
or the USB interface. We build a custom �rmware for the
FX2, enabling us to focus on tracing sparsely occurring events
continuously for the full duration of an experiment. The logic

TABLE I: Cost of components forGrace.

Component Cost (C)
CC1101 Radio Module 9
STM32F401 Development Board 9
8-Channel Logic Analyzer 8
GPS module 26
GPS Antenna 9
Antenna adapter cable 2
PCB 0.50
PCB headers and cables < 2
Jumper Wires < 1
Total: Synchronization Node 19
Total: GPS-disciplined synchronization node 56
Total: Testbed Node 18
Total: Testbed node with PCB 19.50

analyzer's state machine samples the state of its (eight) inputs
at a frequency of 8 MHz (one sample every 125 ns). Internally,
it passes these samples to the USB interface and writes them
to the USB buffer. To one pin of the logic analyzer, we
connect a radio, the same one mentioned above (CC1101
433 MHz radio). To notify the logic analyzer of a successfully
received packet, the CC1101 asserts the successful reception
of a reference signal on one of its GPIO pins [36]. We imple-
ment the described trace collection and time error correction
functionalities and algorithms as part of an application running
in user space on the observer (Raspberry Pi). For having a
high granularity for the timestamps, we choose a value of
(260) as a value for the constantTICKS_PER_SECONDin
our algorithms. For ease of wiring the logic analyzer and the
radio to the Raspberry Pi, and positioning the radio, we design
a (non-essential) custom PCB HAT for the Raspberry Pi (see
Fig. 1b). This HAT consists of a 2-layer PCB, headers, and a
ribbon cable to connect the logic analyzer.

Post-processing: We implement the post-processing to ag-
gregate the GPIO traces into a common human-readable CSV
�le. Moreover, we also convert it into a VCD �le to be able to
easily, visually analyze the combined traces with a software
like GTKWave.

Cost: As we argue thatGrace is a low-cost GPIO tracing
system, we present in Table I the cost for the different
components, at the time of writing. The table shows, that the
hardware for a testbed node stays belowC20. The cost of a
synchronization node depends on the presence or absence of
a GPS module and cost eitherC19 or C56 without or with
GPS, respectively. Equipping a full testbed of 20 nodes with
this GPIO tracing system and a single time source costs less
than C450.

I. Discussion

After introducing the design and its implementation, we
additionally discuss the system's scalability and limitations,
as well as its applicability for other applications.

Generally, we can scale our system to in�nitely many
testbed nodes. The only requirement is that every testbed node
is in single-hop distance from one synchronization node. Thus,
on the side of the testbed nodes, the limit is the availability
of single-hop time signals, which we can easily extend by

A
cc

ep
te

d
m

an
us

cr
ip

t.
P

ub
lis

he
d

in
:

E
ls

ev
ie

r
C

om
pu

te
r

N
et

w
or

ks
,

Vo
l.

22
8,

Ju
ne

20
23

,
D

O
I:

10
.1

01
6/

j.c
om

ne
t.2

02
3.

10
97

46

using more synchronization nodes. The only real limitation is
the testbed server that has to handle the post-processing. The
more nodes we have in the testbed, the more storage it needs to
store all the traces and the more time the post-processing takes
to merge these traces. Yet, as the server is not constraint to a
speci�c hardware, this should not be an issue in a deployment.
Moreover, as our system solely concerns the observer of a
testbed node, the behavior of the IoT devices like their uptime
and availability is of no concern for this system. The only
thing a platform like the IoT nodes we use has to have is the
capability to toggle traceable GPIO pins. Thus, we can use the
system easily in combination with other hardware.

V. EVALUATION

In this section, we experimentally evaluate our time-
synchronized GPIO tracing systemGrace. We evaluate
the GPIO tracing intrusiveness,Grace's degree of time-
synchronization, and its stability within an actual testbed
deployment. We set our system into perspective to other
time synchronization approaches, discussing its advantages
and disadvantages. We �rst evaluate our system when using
a single time source. For this, we evaluate the different sub-
systems individually before �nally looking at the system as
a whole. Afterward, we look at the extension of using more
than one synchronization node and look at its in�uence on the
system's degree of time synchronization.

A. Evaluation Setup

Before our evaluation, we discuss our evaluation environ-
ment, namely our testbed, with the location of the different
node types, the metrics we evaluate, and the clock references
we use for accurately evaluatingGrace's timing.

1) Testbed:We evaluateGrace on our local testbed of 20
nodes (see Fig. 2), spanning the top-most �oor of a university
building with an area of 500m2. The �oor was mostly
unoccupied during the experiments, yet, as we use 433 MHz
for communication, we expect occupation to have minimal
impact on the evaluation results.

In our initial deployment, we equip 16 of the 20 nodes, with
a logic analyzer and a radio (marked with orange squares in
Fig. 2). Additionally, we place the synchronization node in
close vicinity of one of the testbed nodes (marked with a red
circle in Fig. 2). In the latest state of testbed, all nodes are
part of our GPIO tracing systemGrace.

For our additional evaluation, extending the original version
of Grace of the multiple synchronization nodes scenario, we
place three synchronization nodes next to each other beside
the node marked with 'G' on the right side of the testbed
map. Due to a required close proximity of testbed nodes to
the same logic analyzer for evaluating their time offsets, we
place three nodes close to the location of the synchronization
node (red circle) we use for the other experiments.

2) Metrics: We evaluateGrace in terms of the logic an-
alyzer's frequency stability, the synchronization node's fre-
quency stability, timing offset between testbed nodes, tim-
ing offset between time sources, and system-wide time-

Fig. 2: Local testbed of500 m2. Red circle: synchronization
node; Orange squares: Nodes equipped with our GPIO tracing
system (Grace); Blue hexagons: other nodes; Marker G: nodes
equipped with GPS.

synchronization stability. We measure frequency deviations
and time offsets.

3) Reference Clock:To measure and evaluate the exact
timing of events inGrace, we require systems with a more
accurate clock than the system's clock we evaluate. Therefore,
we either use an external logic analyzer (Saleae Logic Pro
8 [39]) or the 1-PPS signal output of GPS receivers as a
reference clock. The error of our reference clock is up to
50 �s=s (50 ppm) for the Saleae logic analyzer [40] and up
to tens of nanoseconds between two GPS receivers. For the
experiments on synchronization node stability (Section V-D),
receiver stability (Section V-E), and multiple time sources
(Section V-G) we use the logic analyzer, as we interface at
least two nodes at once. For the remaining experiments, we use
the GPS receivers. The GPS receivers (marked'G' in Fig. 2)
as well as the ones we use for the evaluation of multiple time
sources (Section V-G) have an external antenna mounted on
the outside of the building, to keep the 1-PPS synchronization
at the speci�ed accuracy.

B. Output intrusiveness

To explain the advantage of GPIO tracing for time stamp-
ing, we evaluate the intrusiveness of it in comparison with
the standard output solution of serial logging usingprint -
statements. We evaluate it using the nRF52840-DK [41], one
of the target platforms present in our testbed, running Contiki-
NG [42]. To access the GPIO pins of the nRF52840 [32],
we use the nRF52840's hardware abstraction layer (HAL)
included in Contiki-NG. In Fig. 3 we compare the duration
of logging one character with and without inserting a newline

A
cc

ep
te

d
m

an
us

cr
ip

t.
P

ub
lis

he
d

in
:

E
ls

ev
ie

r
C

om
pu

te
r

N
et

w
or

ks
,

Vo
l.

22
8,

Ju
ne

20
23

,
D

O
I:

10
.1

01
6/

j.c
om

ne
t.2

02
3.

10
97

46

Fig. 3: Comparison of the duration of different logging out-
puts. We compare the duration of printing 1 byte/character
(avg: 86.2 µs), or 2 bytes(avg: 172.6 µs)(1 character and
a newline character) through the serial interface, with the
duration of the state change of 1 GPIO pin(avg: 140.5 ns).
Please note that we use a logarithmic scale to display the
drastic duration differences between the output through GPIO
and through the serial interface.

Fig. 4: Stability of a deployed logic analyzer over time. On the
Y-axis, we display the relative deviation of the logic analyzer
from its nominal frequency of 8 MHz in ppm.

through the serial interface at a baud rate of 115200 baud/s
and the duration of a state change of a GPIO pin.

The average duration for printing one byte, e.g., 1 character,
is 86:2 µs, and for printing two bytes, e.g., 1 character and
a newline character for better readability, is172:6 µs. The
duration for changing the state of a GPIO pin is signi�cantly
smaller at140:5 ns, equaling 9 clock cycles. Thus, even a
pattern of up to 613 GPIO changes is still faster than printing a
single character through the serial interface. Therefore, we can
conclude that GPIO tracing is a low-intrusive logging method.

C. Logic Analyzer Frequency Stability

We continue our evaluation by analyzing the frequency
stability of a logic analyzer. We, therefore, trace the 1-PPS
signal of a GPS receiver with a logic analyzer. In Fig. 4, we
show the frequency stability over two hours and the relative
occurrence of the different deviations, exemplary for one logic
analyzer. This logic analyzer had during the tracing of the
GPS signal an average deviation from the nominal frequency
of 154.9 ppm. Generally, we expect the frequency stability
of the logic analyzers to be within� 200 ppm [40]. As 200
ppm equals a time difference of 200 µs within a second, and
thus, a maximum time difference of 400 µs between two logic

(a) Stability of the synchronization node's signal over 90
minutes. The radio output of the synchronization node follows
the microcontroller with a slight jitter of on average 18.7 ns.

(b) Offset distribution of a radio's input signal from the radio
output signal of the synchronization node. Avg offset (solid red
line): 1.32 µs, Std (dashed red lines): 637 ns.

Fig. 5: Stability of the microcontroller output, the synchroniza-
tion node's radio output, and the testbed node's radio input.

analyzers, this clearly underlines the need for a system that
time-synchronizes logic analyzers.

D. Frequency Stability Of Synchronization Node

Next, we investigate the frequency stability of the synchro-
nization node. We con�gure the synchronization node to send
a packet once a second according to its internal clock. With an
external logic analyzer, we record the exact sending times over
a period of 90 minutes. For that, we record the completion of
creating a timestamp at the microcontroller by tracing the chip
select line. Moreover, we trace the state of the GPIO pin the
radio turns off once it is done sending a packet.

Fig. 5a shows the offset of the microcontroller's second
from the reference second over the time of the experiment.
This offsets starts at 9 µs and over time reduces to 7 µs.
Fig. 5a also shows the resulting offset of the reference time
signal from the reference time. Generally, the transmission
times of the radio precisely follow the microcontroller's signal
generation times/offset from the reference time with a slight
jitter of on average 18.7ns and a maximum of 78ns. While
the offset between two timestamps is on average 7.1 µs, it
is of no concern as the offset will be evenly present on all
testbed nodes and thus have at most a minor in�uence on
the distributed time-synchronization. The added jitter in the
nanosecond range is no concern for our system's requirements.

After investigating the synchronization node's stability, we
next look at the stability of the testbed nodes. For this, we
�rstly look at the deviation of the input signal at one testbed

A
cc

ep
te

d
m

an
us

cr
ip

t.
P

ub
lis

he
d

in
:

E
ls

ev
ie

r
C

om
pu

te
r

N
et

w
or

ks
,

Vo
l.

22
8,

Ju
ne

20
23

,
D

O
I:

10
.1

01
6/

j.c
om

ne
t.2

02
3.

10
97

46

Fig. 6: Histograms showing the distribution of offsets between
two radio receivers. We show the mean value (0.65 µs) as a
solid red line, and the standard deviation (487 ns) as dashed
red lines.

node from the output signal of the synchronization node. For
that, we interface both nodes with our external logic analyzer
simultaneously. On the synchronization node, we trace the
GPIO pin, the radio turns off once it is done sending a
packet, and on the testbed node, we trace the GPIO pin of
the radio that also noti�es our time-synchronization system of
the availability of a new timestamp. We initially synchronize
these two timestamps, to analyze the receiver's variation in
offset. Fig. 5b shows an average offset of 1.32 µs with a
standard deviation of 637 ns from the synchronization node's
time signal.

E. Receiver Stability

Next, we look at two nodes in the testbed, close to each
other and the signal received by the radios. We once again use
the logic analyzer and trace the GPIO pin of the radio that also
noti�es our time-synchronization system of the availability of
a new timestamp. We run several experiments with a total
duration of almost 5 hours. When looking at the reception time
differences between the two radios, we see the distribution
shown in Fig. 6. The difference between the radio's reception
times (without the time correction system) is on average 654 ns
(median: 562 ns) with a standard deviation of 487 ns. The
maximal measured offset between the two radios is 3.22 µs.
77.4% of the measurements have an offset of less than 1 µs.
Even the maximum value of 3.22 µs is suf�cient for evaluating
the timing of many IoT protocols, including Time-Slotted
Channel Hopping (TSCH) [5].

F. Clock Correction

Next, we focus on the full system, including the time error
correction. To evaluate this, we include the nodes that have
a GPS receiver, and we use the 1-PPS GPS signal traced
by the testbed node's logic analyzers. We analyze the time
differences of the timestamps associated with the 1-PPS GPS
signals. Fig. 7a shows the distribution of the time stamping
error ofGrace. On average, the system has an error of 1.53 µs
with a standard deviation of 644 ns, and a maximum error

of 3.75 µs. This clearly shows the advantage ofGrace over
NTP with a thousandfold higher precision. Moreover, this
synchronization is suf�cient for analyzing timing in many
IoT protocols, including time-critical communication protocols
like Time-Slotted Channel Hopping (TSCH) [5] and Chaos [7].

After comparing the system's stability with a GPS reference,
we can also compare it to the reference signal our synchro-
nization node sends out. Therefore, we compare the deviation
of the local timestamps based on the synchronization signal.
Fig. 7b shows similar results to the GPS-based experiment.
However, when tracing the synchronization node's time signal,
all the offsets between the different receivers get accumulated
(cf. Fig. 6). Overall, the offset, when including all these errors,
between any two nodes is on average 2.92 µs with a maximum
offset of 7.9 µs.

G. Multiple Time Sources

After evaluating our system using a single time source,
we will next evaluate the performance of our extended sys-
tem using multiple synchronization nodes. This is necessary
when we need to span larger buildings or want to time-
synchronize campus-wide networks. For the synchronization
nodes (senders), and the receivers, we trace the end of sending
and the start of the reception with a logic analyzer, respec-
tively. For the full system, we trace with the internal system
the GPS 1-PPS signal of a GPS receiver, the same one for all
involved testbed nodes.

Fig. 8a shows the offset distributions for synchroniza-
tion nodes (senders), radio receivers, and the full time-
synchronization system using a single GPS signal. We feed
the same GPS signal from a single GPS receiver to all three
of the senders. After passing the sender, the sent-out signals
have on average an offset of39ns to each other with a standard
deviation of19:5 ns. The receivers have a signi�cantly higher
timing error of on average480ns (standard deviation:352ns)
with some outliers reaching an offset of up to7:2 µs. As in the
case of one synchronization node, we see that the full system
has a signi�cantly higher timing offset of on average16:1 µs
and with a standard deviation of530 ns.

When using multiple time sources at different locations,
we need to use different GPS modules for them. Thus, next,
we compare how the use of three different GPS receivers
changes the behavior of our system. Fig. 8b shows the offset
distributions for the same subsystems as above. Here, we see
a similar trend as above with slightly higher timing errors
between the senders and the receivers, while the full system
is not affected much, excluding some outliers. The senders
have an average timing offset of173:5 ns to each other with a
standard deviation of63:7 ns and the receivers have a timing
offset of680:5 ns with a standard deviation of453:5 ns. While
these numbers are slightly higher than above, this is expected,
as this setting also includes the time offset introduced by
using multiple GPS receivers. The full systems achieves a time
synchronization error of15:3 µs with a standard deviation of
855:8 ns.

