
TSCH meets BLE:
Routed Mesh Communication over BLE

Laura Harms1,2, Olaf Landsiedel1,2

1Kiel University, Germany
2Chalmers University of Technology, Sweden

{lah, ol}@informatik.uni-kiel.de

Abstract—Bluetooth Low Energy (BLE) is the prevalent com-
munication protocol for the Internet of Things. However, for
time-critical applications requiring time-synchronized multi-hop
networks with often multiple node exchanging data at the same
time slot, BLE lacks a solution. Instead, we commonly see IEEE
802.15.4 being used with its Time-Slotted Channel Hopping
(TSCH) MAC layer.

In this work, we build TBLE, which brings the established
TSCH protocol to BLE, enabling BLE to be used for time-
synchronized routed mesh communication. We show that in
experimental testbed deployments, TBLE achieves similar perfor-
mance to TSCH, with the possibility for lower average latencies
of up to 20%. Moreover, due to the higher spectral efficiency of
BLE compared with IEEE 802.15.4 (40 vs. 16 channels), more
parallel routed communications are possible with TBLE, further
reducing latency and increasing throughput.

I. INTRODUCTION

With more than 5 billion (5 ∗ 109) BLE devices estimated
to be shipped in 2023 alone [10] and a continuing rise in
popularity, Bluetooth Low Energy (BLE) is the prevalent
standard for communication in low-power wireless networks.
Due to its wide availability, low-cost and energy efficiency,
BLE is supported by practically all smart devices we interact
with today. In contrast, most wireless industrial devices and
many smart home devices use IEEE 802.15.4 instead of BLE.
Of the two protocols, the physical layer of BLE is the less
complex one using a GFSK modulation scheme in contrast to
the O-QPSK modulation scheme of IEEE 802.15.4, allowing
for cheaper radios.

Both protocols have limited range and thus rely on, i.e.,
multi-hop mesh networking for communicating over longer
distances. In the field of IEEE 802.15.4, there are several estab-
lished protocols, including those for flooding-based communi-
cation [15], [16] as well as routing-based communication [2].
For routing-based communication, an established technique is
Time-Slotted Channel Hopping (TSCH), the standard MAC
layer protocol in IEEE 802.15.4. For BLE, the standard mesh
protocol is Bluetooth Mesh [7], [8], a protocol using managed
flooding on top of BLE advertisements. While flooding-based
protocols usually use the entire network for sending a message,
routing-based protocols allow multiple parallel communica-
tions in the same network at the same point in time. Yet, to
our knowledge, there is no time-synchronized routing-based
mesh communication protocol for BLE.

Several works looked at the combination of IEEE 802.15.4
TSCH and BLE, either in terms of coexistence [12], [17] or

by using a single radio for both BLE and IEEE 802.15.4 and
communicating TSCH control information using concurrent
BLE transmissions [6]. Especially the latter work raises the
question of why there is the need to continue using IEEE
802.15.4 for TSCH communication while only communicating
control information over BLE.

In this paper, we combine the BLE PHY with the MAC layer
protocol TSCH and call this combination TBLE. TBLE sends
standard TSCH packets as part of time-synchronized BLE
advertisements, enabling routed mesh communication over
BLE with TSCH and replacing IEEE 802.15.4. TBLE enables
the use of well established protocols including deadline-based
real-time communication protocols on top of BLE. We design
TBLE for the use with any BLE radio. We exemplarily
implement a BLE driver for the nRF52840 DK [23] for
Contiki-NG [24] and adapt it to allow the transmission of
valid IEEE 802.15.4 TSCH frames within BLE packets. We
study both the coded (125 kbps/500 kbps) and the uncoded
(1 Mbps/2 Mbps) PHYs of BLE and experimentally evaluate
TBLE’s performance on a low-power wireless testbed using
the well established autonomous scheduler Orchestra [14]
which is included in Contiki-NG and compare its performance
to TSCH over IEEE 802.15.4.

Our evaluation on a testbed shows, that especially the coded
BLE modes achieve a similar connectivity within a deploy-
ment as IEEE 802.15.4. TBLE achieves similar performance
to TSCH, with the possibility for lower average latencies of
up to 20%. Moreover, due to the higher spectral efficiency
of BLE compared with IEEE 802.15.4 (40 vs. 16 channels),
more parallel routed communications are possible with TBLE,
further reducing latency and increasing throughput.

Overall, we make the following contributions:
• We present TBLE, a protocol closing the gap of routed

mesh-communication in BLE. TBLE extends the estab-
lished TSCH standard.

• We design and implement a BLE driver for the Nordic
nRF52840 DK for Contiki-NG and adjust it to be com-
patible with the Contiki-NG IEEE 802.15.4 TSCH and
6TiSCH stack. We make it publicly available1 as open
source.

• We are the first to run TSCH over BLE, demonstrating
TBLE as a practical routed mesh-protocol for BLE.

1Available as open-source at: https://github.com/ds-kiel/TBLE.



• We experimentally evaluate TBLE and compare it to
IEEE 802.15.4 TSCH, showing its feasibility and a possi-
ble performance increase over TSCH without modifying
any upper-layer protocols.

We structure the remainder of this paper as follows. Sec-
tion II gives the necessary background information on IEEE
802.15.4, BLE and TSCH, followed by a detailed dissection
of TSCH in Section III. In Section IV we introduce the design
of TBLE, followed by our experimental evaluation of TBLE
and its comparison to IEEE 802.15.4 TSCH in Section V. In
Section VI we discuss a selection of works related to this topic,
and conclude our work in Section VII.

II. BACKGROUND

In this section, we introduce the required background in-
formation on IEEE 802.15.4, Time-Slotted Channel Hopping
(TSCH), and Bluetooth Low Energy (BLE).

A. IEEE 802.15.4

IEEE 802.15.4 is a low-power personal area radio protocol
introduced in 2003 [1], initially for the 2.4 GHz (2400 –
2483.5 MHz) ISM band. It operates at a data rate of 250 kbps
and uses a robust modulation scheme of O-QPSK with DSSS
(direct-sequence spread spectrum). IEEE 802.15.4 specifies
16 channels that are 2 MHz wide and 5 MHz apart. On the
physical layer, an IEEE 802.15.4 packet consists of 4 preamble
bytes, a 1 byte start of frame delimiter (SFD), a 1 byte packet
length, and up to 127 bytes of payload.

Besides the physical layer, the IEEE 802.15.4 standard also
defines the medium access control (MAC) layer. One defined
MAC layer is Time-Slotted Channel Hopping (TSCH).

B. Time-Slotted Channel Hopping (TSCH)

Time-Slotted Channel Hopping (TSCH) [2] is a standard-
ized MAC layer protocol (IEEE 802.15.4e) for low-power
wireless mesh networks. TSCH combines Time-division mul-
tiple access (TDMA) with Frequency-division multiple access
(FDMA) and a pseudo-random channel hopping mechanism.
Communication occurs in distinct time-frequency-slots, with
as many concurrent communications as channels included in
the hopping sequence (maximally 16). The channel hopping
allows TSCH to withstand narrowband interference.

Slots in TSCH have a standard length of 10 ms and allow
the transmission of a single IEEE 802.15.4 packet followed
by an optional acknowledgement upon successful reception.
Slots can be reserved for sending and receiving Enhanced
Beacons (EB). Beacons are sent regularly containing control
information for nodes to associate to the TSCH network and
to keep the network in sync and alive.

C. Bluetooth Low Energy (BLE)

Bluetooth Low Energy (BLE) [9] is a short-range and low-
power communication protocol in the 2.4 GHz ISM band
targeting single-hop communication between two devices.
BLE uses 40 2-MHz wide frequency channels, which use
Gaussian Frequency Shift Keying (GFSK) as a modulation

scheme. Three of these channels are reserved for (primary)
advertisements and broadcasts, while the other 37 are reserved
for connected communication and secondary advertisements.
BLE offers an uncoded PHY with data rates of 1 Mbps
(standard data rate) and 2 Mbps, and since Bluetooth 5.0
even a long-range coded PHY with data rates of 125 kbps
and 500 kbps.

PHY packet format. The physical layer packet format of
BLE differs between the uncoded PHY and the coded PHY.
The uncoded PHY packet starts with a 1 or 2 byte preamble
of alternating ones and zeros, for a data rate of 1 Mbps
and 2 Mbps, respectively. It is followed by the 4-byte access
address, identifying packets belonging to a connection. For
advertisement packets, the advertisement address is fixed to
0x8E89BED6. Afterward, the packet contains between 2 and
258 bytes payload (PDU) and a 3-byte cyclic redundancy
check (CRC) code for error correction. The coded PHY
packet generally contains the same components, however, with
additional fields for error correction (see Fig. 1). The preamble
is uncoded, consisting of 10 repetitions of 0x3C transmitted
with a data rate of 1 Mbps. The first forward error correction
(FEC) block is always transmitted with a data rate of 125 kbps
containing the access address and the coding indicator (CI).
The CI indicates the coding of the second FEC block, deciding
whether it uses a data rate of 125 kbps or 500 kbps. The PDU
and the CRC are then transmitted with the indicated coding
afterward.

Advertisements. BLE has two operation modes: connected
and non-connected. In the non-connected mode, BLE devices
disclose their presence and advertise their services to nearby
devices. These services include, i.e., media control services
or weather information (e.g., temperature data). For some of
these services, a receiver has to connect to the advertising
device and communicate in connected mode.

Advertisement data. In non-connected mode, an advertiser
sends data (PDU) consisting of a 2-byte header, followed by
one or multiple advertising data (AD) structures. The first
byte of the header contains a 4-bit PDU type, 1 bit reserved
for future use, a 1-bit flag whether the advertiser supports
the LE channel selection algorithm, two 1-bit flags whether
the advertiser’s and the target device’s addresses are random
or public, respectively. The second header byte contains the
length of the subsequent advertising payload. An AD structure
consists of a 1-byte length, n bytes AD type (e.g., an identifier
that a list of service UUIDs follows) and lenght−n bytes AD
data (e.g., the list of service UUIDs).

III. DISSECTING TSCH

After a general introduction of Time-Slotted Channel Hop-
ping (TSCH) in the background, we analyze the inner work-
ings of TSCH. For that, we study the timings within a TSCH
timeslot and the time synchronization mechanism of TSCH,
especially in the context of the implementation of TSCH in
Contiki-NG.



Preamble
(1 or 2 bytes)

Access Address
(4 bytes)

PDU
(2-258 bytes)

CRC
(3 bytes)Uncoded PHY:

Preamble
(80 µs)

Access Address
(256 µs)

PDU (N bytes)
(N*S*8 µs)

CRC
(24*S µs)Coded PHY: CI

(16 µs)
Term 1
(24 µs)

FEC block 1

Term 2
(24 µs)

FEC block 2

Fig. 1: BLE PHY packet formats

TABLE I: IEEE 802.15.4e TSCH timeslot timings.

Name Time offset / duration (µs)
CCAOffset 1800
CCA 128
TxOffset 2120
MaxTx 4256
RxOffset 1020
RxWait 2200
RxAckDelay 800
TxAckDelay 1000
AckWait 400
MaxAck 2400
Sum 9776
Timeslot Length 10000

A. TSCH Timeslot Timing

A TSCH timeslot allows the transmission of one packet
with a subsequent acknowledgement in case the packet was
received. We illustrate the timing within a timeslot for both
the sender and receiver in Fig. 2, and provide the timing offsets
and durations in Table I.

At the sender’s end, a timeslot starts with the transmission
offset (TXOffset). During this offset, the sender configures
its radio, turns it on, and potentially performs Clear Channel
Assessment (CCA). Moreover, the sender prepares the packet
(i.e., adding headers) and starts transmitting. By the end of the
TXOffset, the preamble and the Start of Frame Delimiter
(SFD) should be transmitted. Following the SFD, the radio
transmits the TSCH frame standardized to a maximum length
of 128 bytes including 1 length byte. TSCH reserves a time of
4256 µs equating to 133 bytes for this. After the transmission,
the sender turns off its radio, and in case of an expected
acknowledgement (ACK), it reconfigures the radio into receive
mode and turns it on by the end of the RxAckDelay. If the
sender, which is waiting for the ACK does not receive anything
by the end of AckWait, it turns off its radio. Otherwise, if it
detects an ACK, it receives it and turns off the radio afterward.

The receiver starts with an RxOffset during which it con-
figures the radio and turns it on to listen for incoming packets.
If it does not start receiving a packet within RxWait it turns
off its radio. If the receiver receives a valid packet that requires
acknowledgement, it prepares its radio for transmission during
TxAckDelay and by the end of TxAckDelay it should
have transmitted the packet’s synchronization header. The full
acknowledgment of maximally 69 bytes (plus 1 length byte)
has to be transmitted within the time given by MaxAck of
2400 µs (the duration of 75 bytes).

For both the sender and the receiver, we see a mismatch of

Frame Tx Rx Ack
DelayTx Offset Ack Wait + Rx

Rx Offset Ack TxRx Wait     +     Frame Rx Tx Ack Delay

Fig. 2: Simplified TSCH timeslot timing. We omit the optional
CCAOffset and the CCA, which happen during TxOffset,
if enabled. Please note: the illustrated timing is not to scale.
For the correct timing, see Table I.

a time equaling 5 bytes between the reserved transmission
times and the maximum packet lengths that can be trans-
mitted. We assume that the given times include the times
for transmitting the synchronization header, even though the
synchronization header should have been transmitted already
during TxOffset or TxAckDelay for frame and ACK,
respectively.

B. TSCH packet duration

The TSCH timeslot timing provides us with the maximum
time a transmission might take (MaxTx). However, during
operation, we do not wait until the end of MaxTx before
continuing with the next field of the timeslot if we send
packets shorter than the maximum length. Instead, we directly
continue once the transmission is over. Instead of probing the
radio for the end of the transmission, the implementation of
TSCH in Contiki-NG computes the transmission time of the
packet. The implementation defines the TSCH packet duration
as durationpacket ← airtimebyte ∗ (len + overheadPHY ),
with a PHY overhead of 3 for the nRF52840.

C. TSCH time synchronization

On the physical level, a radio can precisely timestamp
certain events related to the radio packet, which we can use
as markers for time synchronization. For example, in IEEE
802.15.4 mode, the nRF52840 chipset can timestamp events
including framestart, Address sent or received, Packet payload
sent or received, and Packet sent or received. The TSCH
implementation in Contiki-NG uses the start of frame delimiter
(SFD) as the timestamp to synchronize on. While the radio
cannot timestamp the start of the SFD, it can timestamp the
framestart, which is the timestamp right after transmitting or
receiving the SFD. Thus, Contiki-NG can derive the necessary
timestamp easily from the framestart event timestamp. As the
SFD is 1 byte long (and takes 32 µs), we can compute the SFD
timestamp by subtracting 32 µs from the recorded timestamp.



D. Hopping sequences

For counteracting narrowband interference, TSCH uses
channel hopping according to a pseudo-random hopping se-
quence. TSCH defines a 9-bit linear feedback shift register
to determine these hopping sequences. Common hopping
sequences include a single-channel hopping sequence (channel
20), a four-channel hopping sequence (channels 15, 20, 25, and
26), and a 16-channel hopping (all IEEE 802.15.4 channels).

IV. DESIGN

In this section, we discuss our design enabling TSCH on
top of BLE advertisements, which closes the gap of routed
mesh communication in BLE. We discuss the TSCH timeslot
timings regarding the four different BLE data rates and show
how we achieve time synchronization. Moreover, we discuss
our BLE packet format and the channel hopping sequences for
TBLE.

A. Overview

The general idea behind TBLE is to replace the IEEE
802.15.4 PHY with a BLE PHY and send standard TSCH
packets as part of BLE advertisements. For other BLE devices,
these appear like standard BLE packets, while devices running
TBLE can recognize them and form a standard TSCH network
using a BLE PHY instead of the IEEE 802.15.4 PHY for
communication. For that, we have to change the TSCH timing
to work with different data rates and embed the TSCH payload
into BLE packets. Moreover, BLE offers significantly more
radio channels in the same spectrum (40 instead of 16), due
to a lower channel spacing, and thus, we can use different and
longer hopping sequences allowing both more possibilities to
avoid interference and a higher total bandwidth with more
parallel communications. Lastly, a BLE radio does not offer
the same timestamping capabilities as an IEEE 802.15.4 radio;
thus we have to identify a different timestamp for time
synchronization.

B. Derived Timing

In Section III-A, we explore the timing of the standard
10 ms TSCH slot (cf. Fig. 2). The different offsets and wait
times in the standard TSCH slot are partly dependent on the
radio’s data rate. The ones dependent on the radio’s data rate
are the maximum frame length (MaxTX), the maximum ACK
length (MaxAck), the TxOffset, and the AckDelay. The
former two values depend on a packet’s maximum time on
air, thus on the maximum number of bytes and the radio’s
data rate. The latter two depend only to a minor extent on the
radio as they contain mainly processing and wait times and,
in addition, the transmission time of the PHY synchronization
header. The CCA duration might be dependent on the radio,
yet it does not take more time than standardized on the radio
we tested it on, which supports both IEEE 802.15.4 and BLE.
All other times seem to be independent of the radio. Instead,
some of them are dependent on the device’s CPU speed. As
we only change the physical layer (from IEEE 802.15.4 to
BLE) and otherwise keep the same processor capabilities,

we only change the times strongly affected by the physical
data rate: MaxTX and MaxAck. As the PHY synchronization
header takes less time for either BLE mode than for IEEE
802.15.4, we keep TxOffset and AckDelay unchanged,
which increases the times for data processing by 152 µs and
80 µs for the uncoded and coded BLE modes, respectively. We
also keep the guard times for correctly receiving the beginning
of a data packet (RxOffset + RxWait) the same as in IEEE
802.15.4. Those guard times do not have any effect on the total
slot length for IEEE 802.15.4 and do not exceed the derived
timeslot lengths for any of the BLE modes.

Contrary to our expectations, our experiments show, that
the guard time for beginning to receive an acknowledgment
(AckWait) is too low to successfully receive an acknowledg-
ment in coded BLE. Thus, we increase AckWait from 400
to 1000 µs for coded BLE.

From our dissection of TSCH (cf. Section III-A), we know
that we need to reserve the time equivalent to 133 bytes and
75 bytes for MaxTX and MaxAck, respectively. While BLE
would allow for packets with a longer payload, we stick to
the maximum payload size of IEEE 802.15.4, as this does
not require major changes in TSCH. Moreover, packets with
a longer time on air are more susceptible to short bursts of
interference.

1) Packet Format: After setting the basis for the payload
length of a packet and of an acknowledgment, we next discuss
the BLE packet structure to be able to calculate the timing.
This packet structure differs significantly between the coded
and uncoded modes of BLE. While we want to send valid
BLE packets in any case, we also want to enable a radio of
a device that is not running TBLE to discard the packet as
quickly as possible.

For the uncoded modes of BLE (1 Mbps and 2 Mbps),
we choose a custom, application-specific access address and
transmit the TSCH packet as is as the BLE advertisement
packet’s PDU. This should enable other BLE devices to
discard the packet, as it is not using the standard advertisement
access address. Moreover, it is very unlikely that a device has
a connection with the same access address, we use for TBLE.

For the coded modes (125 kbps and 250 kbps), we cannot
use a custom access address, as the radio we use is not able
to receive coded BLE packets with an access address besides
the standard advertisement access address. Instead, we have to
choose a different way to create a BLE compliant but easily
discardable packet. Thus, we create a standard advertisement
packet with a PDU with one advertisement data (AD) structure
containing the TSCH frame. We set the first byte of the
advertisement header to 0x90, using an undefined PDU type,
which might enable other radios to discard the packet right
away. The AD structure we send uses the AD type 0xFF,
identifying the subsequent data as manufacturer specific.

Thus, for both modes, we deviate slightly from sending
correct BLE packets to enable only devices running TBLE
to further process the received data.

2) TBLE Timing: After the considerations regarding the
BLE packet structure and the payload length, we can derive the



TABLE II: TSCH/TBLE timeslot timings and effective data
rates.

IEEE BLE BLE BLE BLE
Mode 802.15.4 125k 500k 1M 2M
MaxTX (µs) 4256 9532 2590 1088 548
MaxAck (µs) 2400 5520 1662 624 316
AckWait (µs) 400 1000 1000 400 400
Sum (µs) 9776 7372 18172 4832 3984
Timeslot (µs) 10000 7500 18500 5000 4000
Effective data 101.6 135.5 54.9 203.2 254
rate (kbps)

timing for MaxTX and MaxAck, which we show in Table II.
Similarly, to IEEE 802.15.4, we round up the timeslot lengths
to the next multiple of 500 µs. The timeslot lengths vary
between 4 and 18.5 ms. In addition to the timeslot lengths,
we also show the effective data rates, which we calculate
for a packet of maximum size (127 data bytes) in kbps with

127∗8
TimeslotLength .

C. Packet duration

To enable TSCH to start the RxAckDelay and
TxAckDelay at the correct time, we need to adjust the TSCH
packet duration computation (cf. Section III-B). Setting the
byte air time for the payload is straight-forward and can be
directly derived from the bitrate. However, the radio PHY
overhead is only easily identifiable for the uncoded mode (10
bytes). For the coded modes of BLE, we identify 4 bytes
overhead in the payload plus certain fixed time overheads.
These are 296µs for FEC block 1, and 54µs or 216µs for
CRC and Term 2 at the end of FEC block 2 for a BLE data
rate of 500 kbps or 125 kbps, respectively (cf. Fig. 1).

D. Time Synchronization

As we discuss in Section III-C, TSCH uses time stamping
functionalities of the radio, for precise time synchronization,
especially the timestamp of the start of frame delimiter (SFD).
As BLE PHY packets do not contain an SFD between the
preamble and the start of the frame, we cannot use the
same timestamp for time synchronization as in the case of
IEEE 802.15.4. The time stamping points the nRF52840’s
radio offers in BLE mode are address sent/received, payload
sent/received, and packet sent/received. When comparing the
accuracy of the different time stamps between two devices
located next to each other and connected to a logic analyzer,
our results strongly suggest that the timestamp of the address
sent/received event is most suitable for TSCH time synchro-
nization. Similar to IEEE 802.15.4, we use this timestamp
to compute the timestamp of the end of the preamble. For
that, we subtract the transmission time for the address from
the timestamp. Moreover, our experiments show, that contrary
to our assumptions, the radio is not done transmitting its
preamble by the end of TxOffset. Thus, to synchronize to
the intended time, we introduce an additional (negative) timing
offset initiating the transmission in TSCH earlier to ensure the
preamble being transmitted exactly at the assumed time.

E. Hopping Sequences

For TBLE, we need hopping sequences using the BLE
channels. For comparison with IEEE 802.15.4, we replicate
the 1, 2, 4, and 16 channel hopping sequences using the BLE
channels that best match the used IEEE 802.15.4 channels.
In addition, we generate a 40 channel hopping sequence
containing all BLE channels and an intermediate one using
32 channels. For the 40 channel hopping sequence, we use
the 9-bit linear feedback shift register defined by the TSCH
standard. For the 32 channel hopping sequence, we take the
40 channel hopping sequence and remove every fifth channel.

F. Standard-compliance Discussion

To end the description of our design, we want to discuss
the standard compliance of TBLE with both TSCH and BLE.
To our knowledge, we are fully compliant with TSCH as
long as we use the maximum 40-channel hopping sequence.
None of the timeslot timing numbers exceed 2 bytes and
thus fit into the TSCH Information Elements (IEs) to transmit
the timeslot timing as part of an Enhanced Beacon (EB).
Moreover, the longer hopping sequence also doesn’t exceed
the length allowed in IEs of EBs.

For BLE, we deviate somewhat from the standard. The
individual packets use an access address not standard for
advertisements or use an undefined PDU type. Moreover,
we use all BLE channels and do not stick to the primary
advertisement channels while sending advertisement packets.
Our reasoning is to enable BLE radios to discard our packets
as quickly as possible after reception, but still enabling BLE
radios running TBLE to join the TSCH network.

V. EVALUATION

After discussing the design of TBLE and the necessary
adaptions and extensions towards TSCH, we experimentally
evaluate its performance. We split the evaluation into two
parts. Firstly, we study the connectivity of the same physical
network using different PHYs. We compare the four BLE PHY
configuration with the IEEE 802.15.4 PHY as our baseline.
Afterward, we evaluate and compare the performance of TSCH
multi-hop communication over BLE and IEEE 802.15.4. For
that, we use the well established autonomous TSCH scheduler
Orchestra [14]. Orchestra is integrated into Contiki-NG and is
a standard benchmarking solution for Contiki-NG. Orchestra
builds upon the routing protocol RPL [5] that builds a routing
tree on top of TSCH.

Setup. For our evaluation, we use our local testbed of 20
nodes (see Fig. 3). The testbed spans the top most floor of a
university building (500 m2) with offices and lab rooms and
shares the wireless spectrum with other networks including
Wi-Fi. Each node is equipped with, i.a., a nRF52840 DK
board [23] and a Raspberry Pi 3B+ as observer for collecting
and processing our evaluation logs. The nRF52840, which our
design targets, is a Cortex-M4 microcontroller with 64 MHz
clock speed, 1 MB flash and 256 KB RAM and a radio
supporting, i.a., both IEEE 802.15.4 and BLE 5.



Fig. 3: Local testbed of 500m2. Red hexagon: TSCH PAN
coordinator/Orchestra root node; Blue circles: network partic-
ipants

Metrics. Throughout this evaluation, we look at the follow-
ing metrics. For the connectivity, we compare the single-hop
reachability of nodes and the Expected Transmission Count
(ETX) [13] for a node’s neighbors. The ETX is the inverse of
the Packet Reception Rate (PRR). For our performance eval-
uation with Orchestra, we look at reliability (Packet Delivery
Rate (PDR)), latency and radio duty cycle for the different
modes.

A. Reachability

Scenario. We investigate the reachable number of nodes for
each node in our testbed for the four BLE PHYs and compare
it to the IEEE 802.15.4 PHY. We quantify the performance
both in terms of neighbors and in terms of average neighbor
ETX. We perform this evaluation for 7 different transmit
powers between −30 dBm and 0 dBm. For each transmit
power we run a 15-minute experiment using one of the
available hopping sequences (1 channel, 4 channel, and 16
channels for all PHYs, plus 32, and 40 channels for the BLE
PHYs). We use the neighbor discovery mode of the centralized
TSCH scheduler MASTER [18].

Results. Fig. 4 and Fig. 5 show the evaluation results for the
5 PHYs. Fig. 4 shows the median number of nodes reachable
for the different transmit powers. The plots show a CDF for
each of the transmit powers. Each line shows the percentage
of nodes in the testbed that has a certain number of neighbors.
For example, the left most visible line in Fig. 4d, shows that
for the 2 Mbps BLE mode at a transmit power of −20 dBm,
7 nodes can reach a single other node, 6 nodes can reach 2
other nodes, and 2, 3, and 1 nodes can reach 3, 4, and 5 nodes,
respectively.

Both the BLE mode with a bitrate of 125 kbps and the IEEE
802.15.4 mode have nodes at a transmit power of 0 dBm that
can reach all other 19 nodes in the testbed. Moreover, these
are the only modes that can reach any neighbors at all, at a
transmit power of −30 dBm. This means that only for these
two modes, a TSCH network forms at −30 dBm. Generally
speaking, the BLE mode with a bitrate of 125 kbps has a

similar number of reachable neighbors as the IEEE 802.15.4
mode. The 500 kbps mode has a slightly lower number of
reachable nodes than the 802.15.4 mode. The 2 Mbps BLE
mode has with 13 possible neighbors a much lower maximum
number of reachable nodes. Moreover, at a transmit power of
−20 dBm, TSCH using the 2 Mbps BLE mode can just barely
form a mesh network.

Fig. 5 shows the average ETX and the standard deviation
for a node’s transmission to all of its reachable neighbors
for 6 out of the 7 transmit powers. We exclude the transmit
power of −30 dBm as it is hardly usable at all. Contrary
to the number of reachable nodes, the average ETX to the
neighbors is significantly higher for 125 kbps BLE (Fig. 5a)
than for IEEE 802.15.4 (Fig. 5e). We suspect this behavior to
come from the robustness of the modulation scheme. While
both modes can reach similar numbers of neighbors, the
BLE modulation scheme (GFSK) should be more affected
by interference, leading to the higher expected number of
transmissions to successfully reach its neighbors. The other
BLE modes (Fig. 5b – 5d) reach a lower number of nodes,
but have a better connection to those.

From these results, we derive that −16 dBm (dark orange
line) is the lowest usable transmit power to form a proper mesh
network for all PHYs. Moreover, −8 dBm (dark red line) is
the transmit power with a medium number of neighbors for
all PHYs. Therefore, we will use these two transmit powers
for our performance evaluation below.

B. Performance Evaluation

Scenario. We evaluate the performance of mesh multi-hop
communication of TBLE in comparison with our baseline
TSCH over IEEE 802.15.4 using the autonomous scheduler
Orchestra at transmit powers of −8 and −16 dBm. We run
multiple experiments with a total runtime of 4 hours for
each transmit power and mode. As Orchestra builds upon
the Routing Protocol for Low-Power and Lossy Networks
(RPL) [5], we compare different routing networks with each
other. Thus, while using the same physical deployment for our
experiments, RPL builds a routing network outside our control,
optimized for the prevalent situation. Therefore, the results
might differ from our intuitive ideas. Yet, using an autonomous
scheduler and a routing protocol like RPL assures us to use
the best routes for each protocol and mode. This allows
us to compare the effective performance of each protocol.
Orchestra sends once a second a packet to a random node of
the network, and the node sends back a reply on reception of
the packet. We evaluate round-trip and one-way performance
of this communication using latency and reliability as our
metrics. For the round-trip latency, we use the node’s measured
time between sending and receiving the packet. For the one-
way latency we use slot counts, which we convert to time. We
base the latter on the slot count, as the timestamping of the
serial interfaces of our testbed are not time synchronized to
the required degree. Lastly, we also compare the radio duty
cycle of the different PHY modes.



0 5 10 15 20
Number of neighbors

0

20

40

60

80

100
PD

R 
[%

]

0dBm
-4dBm
-8dBm
-12dBm
-16dBm
-20dBm
-30dBm

(a) Connectivity CDF for BLE 125 kbps.

0 5 10 15 20
Number of neighbors

0

20

40

60

80

100

PD
R 

[%
]

0dBm
-4dBm
-8dBm
-12dBm
-16dBm
-20dBm
-30dBm

(b) Connectivity CDF for BLE 500 kbps.

0 5 10 15 20
Number of neighbors

0

20

40

60

80

100

PD
R 

[%
]

0dBm
-4dBm
-8dBm
-12dBm
-16dBm
-20dBm
-30dBm

(c) Connectivity CDF for BLE 1 Mbps.

0 5 10 15 20
Number of neighbors

0

20

40

60

80

100

PD
R 

[%
]

0dBm
-4dBm
-8dBm
-12dBm
-16dBm
-20dBm
-30dBm

(d) Connectivity CDF for BLE 2 Mbps.

0 5 10 15 20
Number of neighbors

0

20

40

60

80

100

PD
R 

[%
]

0dBm
-4dBm
-8dBm
-12dBm
-16dBm
-20dBm
-30dBm

(e) Connectivity CDF for IEEE 802.15.4.

Fig. 4: Evaluation of the nodes’ reachability (median reachability CDF for the different hopping sequences). The bitrate has a
clearly visible influence on the communication range and thus the number of neighbors.

Results. Fig. 6 shows the performance of Orchestra for all
modes. Fig. 6a and 6d show that the round-trip latency for
most BLE modes is most of the time better than for IEEE
802.15.4 with an average improvement of 10 to 20%. For
125 kbps BLE (dark red line) this is most visible. While this
mode has the longest slot lengths, it seems that RPL uses
fewer hops for the routing, which benefits the latency in most
cases, but also leads to an increased latency for some packets.
We can see a similar routing benefit for 500 kbps BLE and
1 Mbps BLE in Fig. 6a.

Overall, reliability is comparable for most modes. However,
at a transmit power of −16 dBm, both the 125 kbps BLE mode
and the 2 Mbps BLE mode do not reach maximum reliability.
While we can expect that for the former the routing is not
favorable to reach highest reliability, this should not be the
case for the latter. For the latter (2 Mbps), we observe that the
network formation takes already half an hour and therefore,
we can expect the network to be not as stable as in the other
modes and thus is unable to achieve maximum reliability.

In Fig. 6c and 6f we compare the duty cycle of TBLE and
TSCH over IEEE 802.15.4. We can see that the duty cycle
increases with the bitrate. This can be expected, as a higher
bitrate allows for a shorter slot duration to transmit the same
amount of data. In Orchestra, a receiver listens in every slot. If
the receiver does not encounter a packet, it keeps its radio on
for the RxWait guard time. Therefore, if we have twice the
number of slots (e.g., 1 Mbps BLE vs. IEEE 802.15.4), we
have a doubling in radio-on-time for the majority of slots,
those in which no communication takes place. When we
multiply the duty cycle with the respective slot length, the
resulting values are almost the same. When comparing the

radio duty cycle between a network with a transmit power of
−8 dBm (Fig. 6c) and a transmit power of −16 dBm (Fig. 6f),
we see a minor increase for all modes of 0.03 to 0.5 percantage
points. This confirms that the predominant factor for the duty
cycle are slots without communication.

VI. RELATED WORK

In recent years, several works looked into extending the use
of Time-Slotted Channel Hopping (TSCH) into the field of
other radio PHYs. Brachmann et al. [11] study the possibility
of using TSCH with subGHz PHYs. The authors show its fea-
sibility when adapting the TSCH timeslot timings. Moreover,
they show the possibility of combining multiple PHYs in the
same TSCH schedule. Rady et al. [27] build with g6TiSCH
another work combining multiple PHYs in a single TSCH
network. They perform modifications along the 6TiSCH stack
to allow an intelligent choice which PHY to use in a TSCH
slot. Carhacioglu et al. [12] study the co-existence of TSCH
and BLE and propose a system with a common TSCH and
BLE orchestrator to overcome cross-technology interference.
Hajizadeh et al. [17] build a simulation framework analyz-
ing the coexistence and amount of expectable collisions for
coexisting BLE and TSCH networks.

Baddeley et al. [6] take an approach of combining BLE
and TSCH. They propose 6TiSCH++ which uses the standard
TSCH slots over IEEE 802.15.4 for data communication, but
replaces the beaconing slots with concurrent transmissions
over BLE. In 6TiSCH++, multiple subsequent concurrent BLE
transmissions fit into one TSCH slot and allow for a faster
transmission of control information for the TSCH network.
Concurrent Transmissions (CT) are a well explored commu-
nication paradigm in IEEE 802.15.4 and their feasibility for



-20 -16 -12 -8 -4 0
Transmission power [dBm]

0

1

2

3

ET
X

(a) Average ETX to neighbors for BLE
125 kbps.

-20 -16 -12 -8 -4 0
Transmission power [dBm]

0

1

2

3

ET
X

(b) Average ETX to neighbors for BLE
500 kbps.

-20 -16 -12 -8 -4 0
Transmission power [dBm]

0

1

2

3

ET
X

(c) Average ETX to neighbors for BLE
1 Mbps.

-20 -16 -12 -8 -4 0
Transmission power [dBm]

0

1

2

3

ET
X

(d) Average ETX to neighbors for BLE
2 Mbps.

-20 -16 -12 -8 -4 0
Transmission power [dBm]

0

1

2

3

ET
X

(e) Average ETX to neighbors for IEEE
802.15.4 (250 kbps).

Fig. 5: Evaluation of the nodes’ reachability showing the average ETX to a node’s neighbors. IEEE 802.15.4 has the best
connectivity to its neighbors.

multi-hop communication on top of BLE were shown by
BlueFlood [4], [22].

On the side of pure BLE networking, Patti et al. [25] devise
a connection-oriented protocol for real-time mesh communica-
tion on top of BLE that uses subnetworks, each with a central
node and several peripheral nodes. The networks are linked
through peripheral nodes shared between two subnetworks.
Leonardi et al. [21] extend and implement that solution. In
contrast, we build a single mesh network allowing communica-
tion between any two nodes. With Bluetooth Mesh [7], [8], the
Bluetooth SIG standardized a mesh networking protocol on top
of BLE using managed flooding. Aijaz et al. [3] experimentally
study its performance using the same hardware we use for
TBLE. Leonardi et al. [20] propose RESEMBLE, a protocol
for Bluetooth Mesh enabling TDMA-based communication
with time slots and clock synchronization over Bluetooth
Mesh to allow for real-time communication in Bluetooth Mesh
networks. Contrary to that solution, we create a routing-
enabled solution utilizing a well established time-slotted and
time-synchronized MAC layer protocol. Petersen et al. [26]
extend BLE to enable efficient multi-hop IPv6 over BLE and
Lee et al. [19] bring the RPL routing protocol to BLE.

Our approach to mesh networking on top of BLE is to
some extent in line with these networking approaches, but
differs in certain aspects. On the one hand, we bring TSCH to
another PHY and study a mesh networking approach on BLE.
On the other hand, our approach differs from the approaches
above in that we combine an established MAC layer (TSCH)
for multi-hop routing with a widespread radio communication

technology (BLE), enabling routed mesh communication on
top of BLE.

VII. CONCLUSION

Bluetooth Low Energy is a widely used communication
protocol in the IoT. For advanced communication systems
covering larger areas, mesh communication is necessary.
While BLE offers Bluetooth Mesh, it lacks a routed mesh
communication protocol. With this work, we introduce TBLE,
a combination of BLE and TSCH, and a replacement for IEEE
802.15.4. We show that TSCH and the 6TiSCH network stack
are a viable candidate for routed mesh communication over
BLE. Moreover, with the larger amount of available frequency
slots in comparison with IEEE 802.15.4, and the possibility for
shorter time slots due to higher bit rates, BLE and TBLE might
even be favorable over IEEE 802.15.4 and TSCH in latency-
critical applications. Moreover, BLE supports longer packets,
which could increase the effective bit rate even further and
lead to an even more efficient use of the wireless spectrum.

VIII. ACKNOWLEDGMENTS

The authors would like to thank Tobias Schramm for his
help implementing the BLE driver, this work builds upon.

REFERENCES

[1] “IEEE Standard for Telecommunications and Information Exchange Be-
tween Systems - LAN/MAN Specific Requirements - Part 15: Wireless
Medium Access Control (MAC) and Physical Layer (PHY) Specifica-
tions for Low Rate Wireless Personal Area Networks (WPAN),” IEEE
Std 802.15.4-2003, 2003.



0.0 0.5 1.0 1.5 2.0 2.5
Round-trip latency [s]

0

20

40

60

80

100
PD

R 
[%

]

(a) Round-trip performance for a transmit
power of −8 dBm.

0.0 0.2 0.4 0.6 0.8 1.0
One-way latency [s]

0

20

40

60

80

100

PD
R 

[%
]

(b) One-way performance for a transmit
power of −8 dBm.

0.0

2.5

5.0

7.5

10.0

12.5

15.0

Du
ty

 C
yc

le
 [%

]

IEEE 802.15.4
BLE 125k
BLE 500k
BLE 1M
BLE 2M

(c) Duty cycle for a transmit power of −8
dBm.

0.0 0.5 1.0 1.5 2.0 2.5
Round-trip latency [s]

0

20

40

60

80

100

PD
R 

[%
]

(d) Round-trip performance for a transmit
power of −16 dBm.

0.0 0.2 0.4 0.6 0.8 1.0
One-way latency [s]

0

20

40

60

80

100

PD
R 

[%
]

(e) One-way performance for a transmit
power of −16 dBm.

0

5

10

15

20

Du
ty

 C
yc

le
 [%

]

IEEE 802.15.4
BLE 125k
BLE 500k
BLE 1M
BLE 2M

(f) Duty cycle for a transmit power of −16
dBm.

Fig. 6: Evaluation of the performance of Orchestra for all PHY layers. We show the performance for two transmit powers (−8
dBm and −16 dBm) and the respective radio duty cycles during operation. We show the legend for all plots in Fig. 6c and 6f.
The BLE modes usually achieve better round-trip latency performance with a slight instability of the highest bitrate (2 Mbps)
at a transmit power of −16 dBm.

[2] “IEEE Standard for Local and metropolitan area networks–Part 15.4:
Low-Rate Wireless Personal Area Networks (LR-WPANs) Amendment
1: MAC sublayer,” IEEE, Tech. Rep., 2012. [Online]. Available:
http://ieeexplore.ieee.org/document/6185525/

[3] A. Aijaz, A. Stanoev, D. London, and V. Marot, “Demystifying the
Performance of Bluetooth Mesh: Experimental Evaluation and Optimiza-
tion,” in IEEE Wireless Days (WD), 2021.

[4] B. Al Nahas, S. Duquennoy, and O. Landsiedel, “Concurrent Transmis-
sions for Multi-Hop Bluetooth 5,” in EWSN, 2019, pp. 130–141.

[5] R. Alexander, A. Brandt, J. Vasseur, J. Hui, K. Pister, P. Thubert,
P. Levis, R. Struik, R. Kelsey, and T. Winter, “RPL: IPv6 Routing
Protocol for Low-Power and Lossy Networks,” RFC 6550, Mar. 2012.
[Online]. Available: https://www.rfc-editor.org/info/rfc6550

[6] M. Baddeley, A. Aijaz, U. Raza, A. Stanoev, Y. Jin, M. Schuß,
C. A. Boano, and G. Oikonomou, “6TiSCH++ with Bluetooth 5 and
Concurrent Transmissions,” in EWSN, 2021.

[7] Bluetooth SIG, “Mesh Model 1.0,” 2017. [Online]. Available:
https://www.bluetooth.com/specifications/specs/mesh-model-1-0/

[8] ——, “Mesh Profile 1.0,” 2017. [Online]. Available: https://www.
bluetooth.com/specifications/specs/mesh-profile-1-0/

[9] ——, “Bluetooth Core Specification v5.2,” 2019.
[10] ——, “2021 Market Update,” 2021. [Online].

Available: {https://www.bluetooth.com/wp-content/uploads/2021/01/
2021-Bluetooth\ Market\ Update.pdf}

[11] M. Brachmann, S. Duquennoy, N. Tsiftes, and T. Voigt, “IEEE 802.15.4
TSCH in Sub-GHz: Design Considerations and Multi-band Support,” in
IEEE LCN, 2019.

[12] O. Carhacioglu, P. Zand, and M. Nabi, “Cooperative Coexistence of
BLE and Time Slotted Channel Hopping Networks,” in IEEE PIMRC,
2018.

[13] D. S. J. De Couto, “High-Throughput Routing for Multi-Hop
Wireless Networks,” PhD thesis, MIT, 2004. [Online]. Available:
https://pdos.lcs.mit.edu/papers/grid:decouto-phd/thesis.pdf

[14] S. Duquennoy, B. A. Nahas, O. Landsiedel, and T. Watteyne, “Orches-
tra,” in ACM SenSys, 2015.

[15] F. Ferrari, M. Zimmerling, L. Thiele, and O. Saukh, “Efficient network

flooding and time synchronization with Glossy,” in ACM/IEEE IPSN,
2011.

[16] F. Ferrari, M. Zimmerling, L. Mottola, and L. Thiele, “Low-power
wireless bus,” in ACM SenSys, 2012.

[17] H. Hajizadeh, M. Nabi, M. Vermeulen, and K. Goossens, “Coexistence
Analysis of Co-Located BLE and IEEE 802.15.4 TSCH Networks,”
IEEE Sensors Journal, vol. 21, no. 15, pp. 17 360–17 372, aug 2021.

[18] L. Harms and O. Landsiedel, “MASTER: Long-Term Stable Routing
and Scheduling in Low-Power Wireless Networks,” in IEEE DCOSS,
2020.

[19] T. Lee, M.-S. Lee, H.-S. Kim, and S. Bahk, “A synergistic architecture
for rpl over ble,” in 2016 13th Annual IEEE International Conference
on Sensing, Communication, and Networking (SECON), 2016.

[20] L. Leonardi, L. L. Bello, and G. Patti, “RESEMBLE: A Real-Time
Stack for Synchronized Mesh Mobile Bluetooth Low Energy Networks,”
Applied System Innovation, vol. 6, no. 1, p. 19, jan 2023.

[21] L. Leonardi, G. Patti, and L. L. Bello, “Multi-Hop Real-Time Com-
munications Over Bluetooth Low Energy Industrial Wireless Mesh
Networks,” IEEE Access, vol. 6, pp. 26 505–26 519, 2018.

[22] B. A. Nahas, A. Escobar-Molero, J. Klaue, S. Duquennoy, and O. Land-
siedel, “BlueFlood,” ACM Transactions on Internet of Things, vol. 2,
no. 4, pp. 1–30, jul 2021.

[23] Nordic Semiconductor, “nRF52840 DK.” [Online]. Available: https:
//www.nordicsemi.com/Products/Development-hardware/nrf52840-dk

[24] G. Oikonomou, S. Duquennoy, A. Elsts, J. Eriksson, Y. Tanaka, and
N. Tsiftes, “The Contiki-NG open source operating system for next
generation IoT devices,” SoftwareX, vol. 18, p. 101089, jun 2022.

[25] G. Patti, L. Leonardi, and L. L. Bello, “A Bluetooth Low Energy real-
time protocol for Industrial Wireless mesh Networks,” in IEEE IECON,
2016.

[26] H. Petersen, T. C. Schmidt, and M. Wählisch, “Mind the gap: Multi-
hop ipv6 over ble in the iot,” in Proceedings of the 17th International
Conference on Emerging Networking EXperiments and Technologies,
ser. CoNEXT ’21, 2021.

[27] M. Rady, Q. Lampin, D. Barthel, and T. Watteyne, “g6TiSCH: General-
ized 6TiSCH for Agile Multi-PHY Wireless Networking,” IEEE Access,
vol. 9, pp. 84 465–84 479, 2021.


